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• The Mu3e Experiment 

• High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) 

• The MuPix Sensors 

• The Mu3e Data Acquisition

Overview
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The Mu3e Experiment: 
 

Searching for μ+ → e+e-e+  
with a sensitivity of 10-16  

(2∙10-15 in phase I) 
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e+

e+

e-

• μ+ → e+e-e+ 

• Two positrons, one electron 

• From same vertex 

• Same time 

• Sum of 4-momenta corresponds to muon 
at rest 

• Maximum momentum: ½ mμ = 53 MeV/c

The signal
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• Combination of positrons from ordinary 
muon decay with electrons from: 
- photon conversion, 
- Bhabha scattering, 
- Mis-reconstruction 
 

• Need very good timing, vertex and  
momentum resolution

Accidental Background

e+

e+

e-
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• Allowed radiative decay with internal 
conversion: 
 

  μ+ → e+e-e+νν 
• Only distinguishing feature:  

Missing momentum carried by neutrinos

Internal conversion background

• Need excellent 
momentum resolution 

• New: NLO available from Matteo Fael 
and Signer et al. - now 10-20% easier
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Building the 
Mu3e Experiment 

 
aiming for a branching ratio sensitivity of 10-16
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2 Billion Muon Decays/s
50 ns, 1 Tesla field
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• Apply magnetic field (e.g. 1 Tesla)

• Measure curvature of particles in field

• Limited by detector resolution and 
scattering in detector

Momentum measurement
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• Apply magnetic field (e.g. 1 Tesla)

• Measure curvature of particles in field

• Limited by detector resolution and 
scattering in detector

Momentum measurement

• At ~ 30 MeV/c momentum: Scattering 
completely dominates

• Large pixels: 80 μm

• Very little material: 0.1% X0 per layer
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• Treat hit measurements as arbitrarily  
precise

• Consider scattering in each detector 
plane

• Two hits, two helices:  
Underconstrained problem 

• Minimize scattering angles

• Use multiple scattering theory to define χ2 
 
 
Nucl. Instrum. Meth. A 844C, 135 (2017)

Multiple Scattering Track Fit
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• 1 T magnetic field 

• Resolution dominated by multiple  
scattering 

• Momentum resolution to first order: 

   ΣP/P  ~ θMS/Ω 

• Precision requires large lever arm 
(large bending angle Ω) and  
low multiple scattering θMS

Momentum measurement

Ω

MS

θMS

B
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Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c

B
→

33 cm
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Precision vs. Acceptance
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Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c

B
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Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c

B
→

Ω ~ π

MS

θMS

B
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Detector Design

muon beam

target
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Detector Design

muon beam
target
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Detector Design

muon beam

target

inner pixel layers
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Detector Design

outer pixel layers

muon beam

target

inner pixel layers
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Detector Design

scintillating 
fibres

outer pixel layers

muon beam

target

inner pixel layers
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Detector Design

outer pixel layers

muon beam
target

inner pixel layers

recurl pixel
layers

scintillating 
fibres
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Detector Design

outer pixel layers

muon beam
target

inner pixel layers

recurl pixel
layers

recurl pixel
layers

scintillating 
fibres

Scintillating
tiles
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Mu3e Phase I

Performance Simulations: Mass reconstruction

Work in  
progress
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High-Voltage  
Monolithic Active Pixel Sensors
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High voltage monolithic active pixel  
sensors - Ivan Perić

• Use a high voltage commercial  
process (automotive industry)

Fast and thin sensors: HV-MAPS

P-substrate

N-well E �eld
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High voltage monolithic active pixel  
sensors - Ivan Perić

• Use a high voltage commercial  
process (automotive industry)

• Small active region, fast charge  
collection via drift

Fast and thin sensors: HV-MAPS

P-substrate

N-well

Particle

E �eld
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High voltage monolithic active pixel  
sensors - Ivan Perić

• Use a high voltage commercial  
process (automotive industry)

• Small active region, fast charge  
collection via drift

Fast and thin sensors: HV-MAPS

P-substrate

N-well

Particle

E �eld

• Implement logic directly in N-well in the 
pixel - smart diode array

• Can be thinned down to < 50 μm 
 
(I.Perić, P. Fischer et al., NIM A 582 (2007) 876 )
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Developed a series of HV-MAPS prototypes

• Goal: Detection and signal processing 
with just 50 μm silicon 

• 6th chip, MuPix7, is a full system-on-a-chip 

• Well characterized, working very nicely 

• Next step is going big: 2 x 1 cm2 MuPix8 
under test

The MuPix Prototypes



Niklaus Berger – μEDM October 2018 – Slide 31

MUPIX electronics (MuPix7)
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MuPix7
3 m

m
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MuPix7
3 m

m

Pixels with amplifier 
 
40 x 32 pixels 
80 x 103 μm pixel size
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MuPix7
3 m

m

Pixels with amplifier 
 
40 x 32 pixels 
80 x 103 μm pixel size

Com
parator and digital pixel logic
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• Hits are streamed out on a 1.25 Gbit/s 
LVDS link 

• Up to 30 MHz hits 

• Tested up to 2.5 MHz - no loss of effi-
ciency beyond single pixel dead-time 
(~ 1 μs)

Fully digital output
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Tests done at

• CERN  250 GeV pions

• DESY      5 GeV electrons

• PSI   250 MeV pions

• Mainz      855 MeV electrons 

• Thanks for all the beam time and support!

Beam tests
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Introduction
Y

• X
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Introduction
Y

• X
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• Beam test at DESY with 
4 GeV electrons

• 50 μm sensor,  
90° incidence

• Using high-resolution  
EUDET-Telescope as  
reference 

• All features well  
understood

MuPix7 Performance: Efficiency
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Digital readout: Resolution given by pixel size 
(plus reference telescope resolution)

MuPix7 Performance: Spatial Resolution
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MuPix7 Performance: Time Resolution

Time difference [ns]
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• Using 16 ns timestamps

• Relative to scintillator 
reference 

• Sizeable tail: time-walk 
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MuPix7 Performance: Time resolution

ToT - trigger time [ns]
100− 80− 60− 40− 20− 0 20 40

T
oT

 le
ng

th
 [n

s]

0

500

1000

1500

2000

• Single pixel with time-over-threshold  
signal (~ signal size)

• MuPix8 has signal size for all pixels and 
finer timestamps

• Can do time-walk correction
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• Measurements of time delay  
(At fixed threshold: proxy for signal size) 
with sub-pixel resolution 

• Simulation using TCAD: All features can 
be reproduced

MuPix7 Simulation and Data
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• MuPix8, the first large sensor  
(2 cm x 1 cm) now available

• Currently under test

• Three sub-matrices with different signal 
transmission to periphery

• Results from matrix A with the Mupix7-like 
source follower

MuPix8
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MuPix8 Architecture



Niklaus Berger – μEDM October 2018 – Slide 46

MuPix8 Performance
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MuPix8 Performance
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MuPix8 Performance

• Charge sharing only at pixel edges
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MuPix8 Performance

• Resolution given by pixel 
size (80 x 81 μm)
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MuPix8 Performance
• 8 ns timestamps

• Some delays over the chip, large pixel-
to-pixel variations: Need correction

• Further improvements possible, for  
matrix subset, 6 ns were obtained
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MuPix8 issues

• Powering: Some voltage drop over chip, 
results obtained at 1.9 V or 2 V vs. 1.8 V 
nominal operation voltage 

• Cross-talk: Long lines to the periphery 
have capacitive coupling 
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50 μm silicon is not self-supporting

• Need “no-mass” mechanics

• Also: “no-mass” connection to the  
outside world 
 
See Joost’s talk 

Chips are active: ~ 300 mW/cm2

• Need “no-mass” cooling

• Gaseous helium at very high flow speeds

• Prototype tests so far successful, full  
mock-up under construction

How to get to ~0.1 X0 per layer

• Note: The PANDA luminosity detector 
will operate MuPix in vacuum: 
Cooling via diamond wafers 
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Data Acquisition
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• 1.25 Gbit/s 8b10b encoded LVDS links

• Either three submatrices with a link each 
or 
one link multiplexing the sub-matrices

• Roughly 30 MHits/s per link maximum

• Hits are 32 bit: column, row, time, charge 

• Hits are not strictly time sorted - see 
backup for the workings of the MuPix 
readout state machine

MuPix output
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Phase I:

• 280 Million pixels (+ fibres and tiles)

• No trigger

• ~ 100 Gbit/s

• FPGA-based switching network

• 12 PCs with GPUs

Data Acquisition
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Front end (Altera Arria V FPGAs):

• Receive and decode data

• Correct for time-walk

• Time sorting (most resources)

• Slow control and configuration

• Send data out via 6 Gbit/s optical link

Data Acquisition
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Switching (Altera Arria 10 FPGAs):

• PCIe40 board (Marseille, LHCb 
and ALICE)

• Merge datastreams

• Inject pixel configuration data

• Perform monitoring tasks 

Data Acquisition
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PCs (Altera Arria 10 FPGAs):

• DE5a-NET board (Terasic Inc.)

• Receive data, preprocess

• DMA to GPU

• Buffering 

Data Acquisition

2844 Pixel Sensors

up to 45 
1.25 Gbit/s links

FPGA FPGA FPGA

...

86 FPGAs

1 6 Gbit/s
link each
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• 280 Million pixels (+ fibres and tiles)

• No trigger

• ~ 1 Tbit/s

• Need to find and fit billions of tracks/s

Online reconstruction
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• PCs with Graphics Processing Units 
(GPUs)

• Online track and event reconstruction

• 109 3D track fits/s achieved

• Data reduction by factor ~1000

• Data to tape < 100 Mbyte/s

Online filter farm
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• Mu3e aims for μ → eee at the 10-16 level 

• First large scale use of HV-MAPS 

• Working full prototypes MuPix7 and MuPix8 

• Reconstruct 100 million tracks/s in 100 Gbit/s on ~12 GPUs 

• Start data taking in 2020 

• 2 billion muons/s not before 2024

Conclusion
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Backup Material
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• Add no material: 
  Cool with gaseous Helium  
  (low scattering, high mobility)

• ~ 250 mW/cm2   -   total ~3 kW

• Simulations: Need ~ several m/s flow

Cooling

• Full scale heatable prototype built

• 36 cm active length

• Vibrations studied using  
Michelson-Interferometer

• Can keep temperature below 70°C
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Cooling tests

Global helium stream

Local helium stream
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Readout
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Readout
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Readout
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Readout
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Introduction
Y

• X
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• 90° incidence angle

• 99% efficient for less than 
10 Hz noise per pixel 
 
 

MuPix7 Performance: Efficiency vs. Noise
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• 90° incidence angle

• 99% efficient for less than 
10 Hz noise per pixel 
 
 

• 45° incidence angle

• 99% efficient for less than  
1 Hz noise per pixel 

• MuPix8 has higher  
resistivity substrate: 
45° signal at 90°

MuPix7 Performance: Efficiency vs. Noise
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