A Shower
Reconstruction
Algorithm for Electrons

Rory Fitzpatrick, University of Michigan
Tingjun Yang, FNAL

LArSoft Coordination Meeting
September 11, 2018

e
TCShower

« Goal: Efficiently reconstruct electron showers at energies
relevant to MicroBooNE and DUNE.

e Accurately identifying a parent electron track means we
can use reliable recob:: Track information to define the
shower vertex, direction, and dE/dx.

e TCShower is a simple but effective algorithm for doing this.

larreco branch: feature/rsf TCNueSelection

module: larreco/ShowerFinder/TCShower_module.cc
algorithm: larreco/RecoAlg/TCShowerAlg.h(.cxx)

- input: hits, clusters, tracks (plus associations)

- output: showers, hit-shower and shower-slice associations

TCShower overview

o “Shower-like” clusters are tagged with negative |1Ds by trajcluster.

 |terate through tracks and count how many “shower-like” hits fall within a certain
distance of the track axis.

e Simple, adjustable requirements:

1. minimum and maximum track length
minimum number of shower-like hits
even distribution of shower-like hits around the track
exclude shower-like clusters/hits near vertex of the track
exclude hits “behind” the shower vertex

ok

« |f a shower is found, go back and add additional unclustered hits if they are
close to the shower axis.

 |f a shower is found, look for missing clusters that weren't tagged as shower-like.

e Stop after finding one shower.

1. Tag shower-like clusters

-8
shower-like recob::cluster -3 “~ /—_1_9 -
unclustered / _5 = e 19
-~ — N
— - I -
4 ’\—6

Before using TCShower, run trajcluster and track reconstruction.
Trajcluster will label “shower-like” clusters of hits with negative IDs.

The shower-like decision is made based
on MCS momentum and proximity to
(tcc.showerTag[@] <= @) : other clusters with user-defined
(slc.tjs.size() > 20000) ; thresholds (ShowerTag[1] = 100 and
ShowerTag[2] = 10 are defaults)

newCuts = (tcc.showerTag([@] > 2);
typicalChgRMS = 0.5 * (tcc.chargeCuts[1] + tcc.chargeCuts([2]);

2. Sort Tracks

shower-like recob::cluster - ‘ o~ -
unclustered / =
2 3, etc
-~
1

Sort tracks based on length (< 20 cm, > 20 cm) then by start z position.
The intention is to test the parent electron (2 in the schematic) prior to
tracks reconstructed inside the shower.

art:: <recob::Track>& 1, $s <recob::Track>& r) {
12 1->Length();
rz r->Length();

This sorting mechanism works well for
DUNE/ArgoNeuT energies because electrons
(12 > 20 &4 1z <= 20) false; are usually forward-going. Additional sorting

(1z <= 20 && rz > 20) true; _
1->Vertex().Z() > r->Vertex().z(); mechanisms could be added.

3. Iterate through tracks

shower-like recob::cluster
unclustered -

Count “shower-like” hits near the axis defined by the track

(i = 0; 1 < tracklist.size(); ++i) {

chowerHite.clear();

tolerance = 100;

pullTolerance NN
wr ot p e A4 Thresholds can be adjusted by the
minDistVert = i . .
user. These will be turned into fcl
(tracklist[i]->Length(] < 28) H parameters soon

(tracklist[i]->Length(] > 100)

(tracklist[i]->Length() < 58) {
tclerance = 50;
ptllTolerance = 8.9;
}

4. If (shower) add missing hits

shower-like recob::cluster
unclustered

If a shower is found, go back and look for unclustered hits that were
ignored before.

showerHitPull /= nShowerHits;
(nShowerHits > tolerance && std::abs(showerHitPull) < pullTolerance) {
showerCandidate = true;

(nShowerHits > 400) maxDist %= 2;
(k = @; k < hitlist.size(); ++k) {
stds:: < art:: <recob::Cluster> > hit_clslist = hitcls_fm.at(hitlist[k].key());

(hit_clslist.size()) H
isGoodHit = goodHit(hitlist[k], maxDist*2, minDistVert*2, trk_wirel, trk_tickl, trk_wire2, trk_tick2);
(isGoodHit == 1 && addShowerHit(hitlist[k], showerHits)) showerHits.push_back(hitlist[k]);

5. If (shower) add missing clusters

shower-like recob::cluster
unclustered

If a shower is found, go back and look for clusters inside the shower that
weren’t labeled “shower-like”.

At this point the shower is complete.

The vertex and direction are defined using track information.
dE/dx can also be extracted from the start of the track.

TCShower with recob::slices

shower::TCShower:: (art:: & evt) {
std:: <std:: <recob::Shower> > showers(new std:: <recob::Shower>);
std:: <art:: <recob::Shower, recob::Hit> > hitShowerAssociations(new art:: <recob::Shower, recob::Hit>);

art:: < std:: <recob::Slice> > slicelListHandle;
std:: <art:: <recob::Slice> > slicelist;
(evt.getByLabel(fSliceModulelLabel,slicelListHandle))
art::fill_ptr_vector(slicelist, slicelistHandle);

foundShower = -1;

(slicelist.size()) {
(i =0; i < slicelist.size(); ++1i) {
foundShower = getShowerswWithSlices(evt, slicelist[i]);

(foundShower) {
showers->push_back(recob::Shower(fTCAlg.shwDir, fTCAlg.dcosVtxErr, fTCAlg.shwvtx, fTCAlg.xyzErr, fTCAlg.totalEnergy\

, fTCAlg.totalEnergyErr, fTCAlg.dEdx, fTCAlg.dEdxErr, fTCAlg.bestplane, 0));
showers->back().set_id(showers->size()-1);

util::CreateAssn(x , evt, x(showers.get()), fTCAlg.showerHits, x(hitShowerAssociations.get()));

Trajcluster was recently restructured to run on recob::slices produced by
DBCluster3D. If slices are present, TCShower will run once on each slice.

ArgoNeul example

80 100 120 144) |60 180 2% 220

- v v T v u u T u T v T T v u T u T v T v u v T T T T L
1300 — —
1200— w—t
1000 — —
800 — —
600 —
400 — -
) - — 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 | 1 | B
l&({} & | L L 1 T 7 LI | LI | L] | LR]
1400 — .]
1200 — —
1000 — —
800 — &8 =
- -d /;
o — I —
400 —]
- il —— —

— - - o

200 —

A l A A l A A l A A l A l e
100 120 140 160 180 200 220

=
—
=l
>

MicroBooNE example

Y] T 110 10 AR} Jo0 1500 L]
W _—ﬂ——_ T Y T T T T p—
- -]
u FJ —
. —
- —
- -~ =
L —]
L =
™ --‘ ; o —

III|III|III|III|III|III|III|III|II
4
o

2t —
240 . . I
. —
N [IR [Rt
Y50 o
—rTTTTTT T
- =
- —
——
PN T |

PR (TS S S S N S Shur S S (T S N S U N S ST ST S N T SN S T NS S S S N S S S S S S S T S —

BT T U0 110 1150 10 * 1250 ERILH] B0 1 140

used with recob::slices

150 2 250 un

DUNE example

J
=
-
-

T T T T

-

— " " " " T

TCShower wiI_I_ find sﬁbwers c}‘ossing —betwee”ﬁ TPCs

Summary

 TCShower has been tested successfully on
ArgoNeul, MicroBooNE, and DUNE events.

 Our primary goal is to accurately identify the parent

electron to get at the shower vertex, direction, and
dE/dx.

 TCShower is designed to find electron showers
more efficiently than photon showers (and this is the
case in practice).

* Merging request: larreco feature/rsf_TCNueSelection

