

Other BSM Searches at the Tevatron

Shin-Shan Yu Fermi National Accelerator Laboratory

on behalf of the CDF and D0 collaborations

Hadron Collider Physics Symposium, Galena, Illinois, USA May 29, 2008

What I Will Cover in This Talk

- 15 non-SUSY, non-Higgs BSM results from 1-2.5 fb⁻¹ of data
- Signature-based
 - Final-state driven
 - Objects: **e**, μ, τ, **MET**, **jet**, **b-jet**, γ
 - Examine event counts and kinematic distributions
 - Standard model is known. Look for any deviations everywhere

Model-inspired

- Theory driven
- Standard model and new physics known
- Set limit on model parameters
 - Large Extra Dimension
 - Randall-Sundrum Graviton, Extended Gauge Bosons
 - Leptoquark
 - Maximal Flavor Violation, Technicolor, 4th generation

Shin-Shan Yu

Signature-based

Anomalous γ b MET+ X in 2.0 fb⁻¹

NEW!

Anomalous γγ MET in 2.0 fb⁻¹

SUSY, Higgs Build a "MET resolution model" to calculate MET significance

	MetSig > 3.0	MetSig > 4.0	MetSig > 5.0
EWK	53.6 ± 8.9	47.3 ± 8.0	41.6 ± 7.0
QCD	52.1±11.5	15.4 ± 3.8	6.2 ± 2.7
Non- collision	0.90 ± 0.32	0.85 ± 0.30	0.80 ± 0.27
Total	106.6 ± 14.5	63.6 ± 8.9	48.6 ± 7.5
Observed	120	52	34

Global Search in 2.0 fb⁻¹: Vista

- Identify physics objects with p_T > 17 GeV
- No significant discrepancy in population
- Most discrepant distributions are due to difficulty in modeling soft jet emission

Shin-Shan Yu

Global Search: Sleuth / Bump Hunter

Sleuth

- Search for excess at high sum- p_T
- The p-value of the most discrepant excess after taking into account trials factor is 8%

Bump Hunter

- Search for resonances in invariant mass
- Search window: 2 X detector mass resolution
- ~5000 mass distributions
- Other requirements
 - ≥ 5 data events
 - Verify sideband agree better than the center
- The only significant bump found is attributed to the ∆R discrepancy in Vista
- No new physics found

arXiv: 0805.0742, 0712.2534, 0712.1311

Shin-Shan Yu

Large Extra Dimension in γ + MET

Large Extra Dimensions in \gamma + MET

- Arkani-Hamed, Dimopoulos, Dvali (ADD) model $q \, \overline{q} o \gamma \, G_{\, K\!K}$
 - Aim to solve hierarchy between EW (1 TeV) and Plank scales (10¹⁶ TeV)
 - n extra large spatial dimensions which are compactified on a scale R
 - SM fields confined to 4-dim, graviton propagates in the (4+n) bulk
 - Predict fundamental Plank scale M_D at 1 TeV
 - Relate Plank masses in 4-dim to that in (4+n)-dim

 $M_{pl}^2 = 8\pi M_D^{n+2} R^n$

- For n ≤ 8, mass splitting small enough to integrate all KK modes (meV-MeV)
- Kaluza-Klein graviton: stable, non-interacting \rightarrow MET

Shin-Shan Yu

Large Extra Dimensions in γ + MET

How to suppress cosmics and beam halos?

CDF

2.0 fb⁻¹

- Photon timing in CAL
- Topological cuts
 - Low-pt track multiplicity, angle between muon hit and photon, energy deposition in the calorimeter

D0

1.0 fb⁻¹

- EM object pointing from the EM CAL to the beam line
- Cut on the distance between photon vertex and the primary vertex (using tracks)

Shin-Shan Yu

Large Extra Dimensions in γ + MET

Extended Gauge Bosons and Randall-Sundrum Gravitons

Dijet Resonances in 1.1 fb⁻¹

Shin-Shan Yu

High-mass ee, yy Resonances

CDF 2.5 fb⁻¹ (largest dataset)

- NP \rightarrow ee
 - NP = E6 Z', Sequential Z', RS Graviton
- D0 1.0 fb⁻¹
- Randall-Sundrum Graviton

- First massive Kaluza-Klein excitation
- Warped extra dimension, exponential warp factor solves hierarchy problem
- Two branes, TeV and Planck. Gravitons live everywhere, SM confined to TeV brane.

Shin-Shan Yu

High-mass ee, yy Spectrum

- CDF: Large excess (3.8 σ) for M_{ee} = 228 250 GeV/c²
 - P value = 0.6% to see a 3.8 σ excess in 150-1000 GeV/c²
 - Significances in sub-samples: 2.9 σ (CC) and 2.7 σ (CF)
- D0: no excess

Shin-Shan Yu

RS Graviton \rightarrow ee, $\gamma\gamma$

- Set limit on M_1 and the coupling to the SM fields, $k/\overline{M_{pl}}$
 - K: warp factor which gives the ED curvature $B(G_{RS} \rightarrow \gamma \gamma) = 2 \cdot B(G_{RS} \rightarrow ee)$
 - Reduced Plank scale Shin-Shan Yu

Limits on Masses of Z' Bosons

CDF Run II Preliminary

W' $\rightarrow e\overline{v}$ in 1.0 fb⁻¹

- E6, L-R symmetric model, Altarelli Reference Model
- No excess seen

World's best limit M(W') > 1.0 TeV/c²

Pair Production of Scalar Leptoquarks

Leptoquarks

- Couples directly to a quark and a lepton
- Carry both a baryon and a lepton number
- Predicted by
 - GUT
 - Extended Technicolor
 - R-parity violating SUSY
 - Compositeness
- Spin-0 or spin-1 (only scalars today)
- Charge Q = 1/3, 2/3, 4/3
- Couples to a single generation
- Focus on pair production
 - qq or gg
 - Cross-section only depends on M_{LQ}

 $\beta \equiv BR(LQ \rightarrow \ell j)$ $\sigma(\nu\nu j j) \propto (1 - \beta)^2$ $-(\ell \ell j j) \propto \beta^2$ $\sigma(\ell\ell jj) \propto \beta^2$ $\sigma(\ell v jj) \propto 2\beta(1-$

Scalar LQs to dijet + MET in 2.0 fb⁻¹

• Started as signature-based

- Leptoquark
- Little Higgs (T-parity conserved)
- UED (K-parity conserved)
- MSSM (R-parity conservd)
- Veto lepons and 3rd energetic jets ^g/₂
- Two kinematic regions
 - Low: ΣE_T(j) > 125 GeV, MET > 80 GeV
 - High: ΣE_T(j) > 225 GeV, MET > 100 GeV

Data-driven background estimate

- $Z \rightarrow vv + jets$
- $W \rightarrow I v$ +jets with missing lepton
- Set limits on 3 generations of LQs with Q=1/3, 2/3, β = 0
 For m= 2M_{LQ}, M(LQ₁) or M(LQ₂) > 177 GeV/c²
 M(LQ₃) > 167 GeV/c²

$$LQ\overline{LQ} \to v \, q \, \overline{v} \, \overline{q}$$

Cross-section limits for 1st- & 2nd-gen leptoquarks (95% CL)

Shin-Shan Yu

3rd-Gen Scalar LQs to ττbb in 1.1 fb⁻¹

data

World's best limit

- For m= 2M_{LQ}, M(LQ₃) > 180 GeV/c²
 - Charge= 4/3, 2/3 LQ, β = 1
 - For Q =2/3, LQ→ t v is allowed, only suppressed by phase space
 - BR(LQ→τb) = 1 0.5 * Fsp

Shin-Shan Yu

Other Models

Same-sign Top Pairs in 2.0 fb⁻¹

By S. Bar-Shalom, A. Rajaraman

 In Maximum Flavor Violation, a new scalar couples to quarks in an opposite way of CKM matrix

$$\Phi_{FV} \equiv \left(\eta^{+}, \eta^{0}\right)$$

$$\xi_{i3}, \xi_{3i} \sim V_{tb} \text{ for } i = 1 \text{ or } 2$$

$$\xi_{33} \sim V_{td}$$

• Scenario $m(\eta^+) >> m(\eta^0)$ $\xi = \xi_{13} = \xi_{31} >> \xi_{23,32} >> \xi_{33}$

arXiv/0711.3193 arXiv/0803.3795

Hadron Collider Physics Symposium 2008

NEW!

Same-sign Top Pairs in 2.0 fb⁻¹

• For $\xi \sim 1 \& m_{\eta 0} \sim 200$ GeV, 11 MxFV events expected

No excess. 2.9±1.8 (exp) vs. 3 (obs)

Shin-Shan Yu

NEW!

Technicolor ρ^{\pm} and ρ^{0} in 1.9 fb⁻¹

Long-lived Particles \rightarrow Z + X in 1.1 fb⁻¹

Conclusion

Collider Run II Integrated Luminosity

- Both CDF and D0 have broad programs to look for evidence of new physics
- No significant excess in 1-2.5 fb⁻¹ of data
 - But some indications of new physics may be understood with more data
- More data are coming!

Shin-Shan Yu

What We Want to Cover

Every BSM model and those not yet thought of

Backup Slides

Detectors

 Multi-purpose detector: tracking chamber, EM (ECAL) and Had calorimeters (HCAL), and muon chamber

Why Photons?

• CDF Run I μγ+MET excess

- 86 pb⁻¹
- 11 observed
- 4.2 ± 0.5 expected
- PRL 89, 041802 (2002)

CDF Run I eeγγ+MET event

- 86 pb⁻¹
- Dominant SM from WWγγ:
- 8×10⁻⁷ events
- Total Bg: 10⁻⁶ events
- PRL 81, 1791 (1998)

A hint of new physics?

 $E_{\rm T} = 55 \, {\rm GeV}$

Mee= 163 GeV/c² Mee $\gamma\gamma$ = 232 GeV/c² Mee $\gamma\gamma$ MET=307 GeV/c²

- X = jets, mostly fakes
- Selection in 2.0 fb⁻¹ data
 - E_T(γ) > 25 GeV, |η| < 1.1
 - \geq 2 jets with E_T>15 GeV, $|\eta|$ < 2.0
 - ≥ 1 tight b-tag (eff 40%)
 - MET > 25 GeV, ∆\u03c6(jet → MET)>0.3
- No excess in 15 distributions

• X = lepton (e, μ)

- Selection in 1.9 fb⁻¹ data
 - E_T(γ) > 10 GeV, MET > 20 GeV
 - \geq 1 loose b-tag (eff 50%)
 - 1 lepton p_T > 20 GeV, |η| < 1.0
 - $H_T > 200 \text{ GeV}, N_{jets} > 2 \text{ (for t } t + \gamma)$
 - Measure $\sigma(tt\gamma) = 0.15 \pm 0.08 \text{ pb}$
 - NLO σ = 0.080 ± 0.012 pb

NEW!

Tight and Loose b-tagging

Anomalous Production of γ b j MET

Anomalous Production of γ b j MET

 $\widetilde{\chi}_i^+ \widetilde{\chi}_2^0 \rightarrow (\widetilde{t}\,\overline{b})(\gamma \widetilde{\chi}_1^0) \rightarrow (c\overline{b}\,\widetilde{\chi}_1^0)(\gamma \widetilde{\chi}_1^0)$ $\tilde{\chi}_i \tilde{\chi}_i \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \gamma G h G \rightarrow \gamma G b \overline{b} G$

Background Source	Number	Statistical Uncertainty	Systematic Uncertainty
γb	291	7	50
γc	92	25	45
Fake b, real γ	141	6	30
Fake γ	113	49	54
Total	637	54	128

TABLE III: Number of predicted background events in the signal region.

Anomalous Production of *γ* **b MET+ X**

 $t\bar{t} \rightarrow Wb\tilde{t}\,\tilde{\chi}_i \rightarrow Wbc\tilde{\chi}_i\tilde{\chi}_j \rightarrow Wbc\tilde{\chi}_0\tilde{\chi}_0\gamma + X$

CDF Run II Preliminary, 1.9 fb ⁻¹								
Lepton + Photon + $E_{\rm T}$ + b Events								
SM Source	$e\gamma b \mathbb{E}_{\mathrm{T}}$ $\mu\gamma b \mathbb{E}_{\mathrm{T}}$ $\ (e+\mu)\gamma b \mathbb{E}_{\mathrm{T}}$							
$t\bar{t}\gamma$ semileptonic	2.06 ± 0.38	1.52 ± 0.28	3.58 ± 0.65					
$t\bar{t}\gamma$ dileptonic	1.30 ± 0.23	1.02 ± 0.18	2.32 ± 0.41					
$W^{\pm}c\gamma$	0.75 ± 0.16	0.72 ± 0.15	1.47 ± 0.26					
$W^{\pm}cc\gamma$	0.08 ± 0.04	0.22 ± 0.06	0.30 ± 0.08					
$W^{\pm}bb\gamma$	0.62 ± 0.11	0.42 ± 0.08	1.04 ± 0.17					
$Z(au au)\gamma$	0.13 ± 0.09	0.11 ± 0.08	0.24 ± 0.12					
WZ	0.08 ± 0.04	0.01 ± 0.01	0.09 ± 0.04					
$ au \to \gamma { m fake}$	0.12 ± 0.01	0.10 ± 0.01	0.22 ± 0.01					
Jet faking γ	4.56 ± 1.92	3.02 ± 1.19	7.58 ± 3.11					
Mistags	4.11 ± 0.41	3.54 ± 0.37	7.65 ± 0.70					
QCD	1.49 ± 0.77	0^{+1}_{-0}	$1.49^{+1.30}_{-0.77}$					
$ee \mathbb{E}_{\mathrm{T}}b, e \rightarrow \gamma$	1.50 ± 0.28	-	1.50 ± 0.28					
$ue \mathbb{E}_{\mathrm{T}} b, e \rightarrow \gamma$	—	0.45 ± 0.10	0.45 ± 0.10					
Predicted	$16.8 \pm 2.2(tot)$	$11.1^{+1.7}_{-1.4}(tot)$	$27.9^{+3.6}_{-3.5}(tot)$					
Observed	16	12	28					

Anomalous Production of γ b MET+ X

Hadron Collider Physics Symposium 2008

ttγ Feynman Diagrams

Hadron Collider Physics Symposium 2008

A ttγ Candidate

• 2 tags and 4 energetic jets with a low χ^2 (1.03) from a fit to the constrained ttbar system. The reconstructed mass is 166.5 GeV/c².

Shin-Shan Yu

Hadron Collider Physics Symposium 2008

A ttγ Candidate

Run 193396 Event 1050006

Shin-Shan Yu

Hadron Collider Physics Symposium 2008

Anomalous Production of $\gamma\gamma$ **MET**

$W\gamma$ efficiency: MET sig > 3 = 84% MET sig > 5 = 72%

- Unclustered energy from zero-jet events in Z and diphoton sample
 - METx and METy vs. sqrt(Et)
- Jet energy from Z+jet and dijet samples
 - Energy hadron/detector ratio-1 in bins of energy and eta

Vista+Sleuth

- Classify events by their object content (final state)
- Simulate standard model with Monte Carlo
- Global fit to extract correction factors (luminosity, k-factors, mis-id rates, trigger efficiencies, jet energy scale)
- Look for anomalies in distributions (bulk)
- Look for excesses in high sum E_T distributions
 - Assumes NP will be at high sum E_T and appear as an excess
- Order final states by how discrepant they are
 - Flag interesting states for further study
- Iterative procedure to identify and account for detector effects
- Sensitivity to new physics depends on details of final state
- Provides a safety net to avoid missing the obvious

Global Search in 2.0 fb⁻¹: Vista

- Study bulk features of 2.0 fb⁻¹ data
- Identify physics objects with p_T
 > 17 GeV
- Partition into ~ 400 exclusive final states
- SM background prediction
 - Primarily Pythia and MadEvent, then cdfSim
 - Determine correction factors by a global fit to all final states, subject to external constraints
 - 43 correction factors for object ID, cross-sections, fake rates
- Trials factor 1-(1-p)^N

Global Search: Vista

Hadron Collider Physics Symposium 2008

Large Extra Dimensions in γ + MET

- CDF: 2.0 fb⁻¹, D0: 1.1 fb⁻¹
- Energetic photon and missing E_T
 - E_T(γ) > 90 GeV, |η| < 1.1
 - MET > 50 GeV (CDF), 70 GeV (D0)
- Veto high p_T jets and tracks
- Dominant backgrounds
 - $Z \rightarrow \nu \nu + \gamma$
 - $W \rightarrow ev$ where e is misID as a γ
 - $W \rightarrow I \nu + \gamma$ with missing lepton
 - non-collision: cosmics, beam-halo
- Special strategy to reject noncollision background

Hadron Collider F

Large Extra Dimensions in γ + MET

Shin-Shan Yu

Hadron Collider Physics Symposium 2008

y

Extra-dim (n)	95% CL lower limit on M _D in GeV			
	CDF	D0		
	(2.0 fb ⁻¹)	(1.0 fb ⁻¹)		
2	1080	884		
3	1000	864		
4	970	836		
5	930	820		
6	900	797		
7		797		
8		778		

LED in γ + MET

- LEP center of mass energy only 1/5 of MD
- **Tevatron twice of MD**
- $\sigma \propto \left(\frac{s}{M_{D}}\right)^{2}$ LEP has energy constraint to remove Z_γ background

CDF 2.5 fb⁻¹ (largest dataset)

- $X \rightarrow ee$
 - X = E6 Z', RS Graviton
- an e⁺e⁻ pair
 - CC ($|\eta| < 1.1$) or CF ($|\eta| < 1.1, 2.0$), E_T(e) > 25 GeV
- Dominant background: Drell-Yan
 - Normalized with data 76 < M_{ee} < 106 GeV/c² for CC, 81 < M_{ee} < 101 GeV/c² for CF

- D0 1.0 fb⁻¹
- Randall-Sundrum Graviton $q\overline{q}(gg) \rightarrow G \rightarrow \gamma\gamma, ee$
 - mass M₁
 - First massive Kaluza-Klein excitation
 - 5-dimensional space
 - Warped space-time metric
- 2 EM objects (both ee, γγ)
 - $E_T > 25 \text{ GeV}, |\eta| < 1.1 \text{ each}$
- Dominant background: Drell-Yan, direct γγ production
 - Normalized with data 60 < M_{ee,γγ} < 140 GeV/c²

RS Graviton \rightarrow ee, $\gamma\gamma$

For M1=230-250 GeV/c2, 37.1 ± 3.7 (exp) vs. 41 (obs)

- Graviton wave function suppressed exponentially from the Plank-brane to the SM-brane
- Towers of Kaluza-Klein excitations as the 4-dim manifestation of G propagating in 5-dim space
- Massless zero-mode couples with gravitational strength

For M1=228-250 GeV/c2, 67.7 ± 3.2 (exp) vs. 101 (obs)

W' $\rightarrow e\overline{v}$ in 1.0 fb⁻¹

- 1 central electron and large MET
 - E_T(e) > 30 GeV, MET > 30 GeV
 - Additional jet not back-to-back with the electron or MET
 - 0.6 < E_T(e)/MET < 1.4</p>
- Transverse mass M_T(MET, e) is a good discriminant
 - Use M_T < 30 GeV/c² to estimate QCD background
 - Use 60 < M_T < 140 GeV/c² to obtain overall normalization of EWK background

- No excess seen
- Set limit on W' mass using M_{T}
- Assume
 - Altarelli Reference Model
 - Couplings to fermions same as SM
 - Same SM CKM matrix
 - No mixing $(W \sim W_1, W' \sim W_2)$
 - W' \rightarrow WZ suppressed
 - $\Gamma_{w'} = 4/3 * \Gamma_{w} * m_{w'}/m_{w}$

 $W' \rightarrow e \overline{v}$

$\mathbf{F}_{\mathbf{W}}^{\mathbf{U}} = 500 \text{ GeV}$ $\mathbf{m}_{\mathbf{W}}^{\mathbf{U}} = 700 \text{ GeV}$ $\mathbf{m}_{\mathbf{W}}^{\mathbf{U}} = 900 \text{ GeV}$ $\mathbf{m}_{\mathbf{W}}^{\mathbf{U}} = 1100 \text{ GeV}$

959±92 (exp) vs. 967 (obs)

Shin-Shan Yu

10

10⁻²∃

n

200

400

600

800

1000

m_T [GeV]

1200

Hadron Collider Physics Symposium 2008

Dijet Mass Resonances

- Selections in 1.1 fb⁻¹ data
 - ≥ 2 jets, M_{ij} > 180 GeV/c², |y| < 1.0</p>
- Axigluons→qqbar
 - In chiral color, the unbroken color symmetry SU(3)c of QCD results from the breaking of a larger chiral color group SU(3)L X SU(3)R.
 - This model predicts massive color-octet axial vector gluons
- Coloron→qqbar
 - The string gauge group is extended to SU(3)1 X SU(3)2. The extended gauge bosons from each SU(3) mix to form a color-octet of massless gluons and an color-octget of massive colors.

E6 diquarks→qq or qbarqbar

- Superstring theory in 10 dimension is anomaly free if the gauge group is E8 X E8. The compactification of the extra 6 dimensions can lead to E6 as the grand unification group for the strong and EWK interactions
- Color-triplet scalar diquarks with charge 1/3 or -1/3 which couples to ud or ubardbar
- Color-octet technirhos->gg or qqbar
 - Extended technicolor or topcolor-assisted tenicolor

Shin-Shan Yu

Hadron Collider Physics Symposium 2008

Dijet Mass Resonances

Model Name	X	Color	J P	Г / (2М)	Chan
E ₆ Diquark	D	Triplet	0+	0.004	ud
Excited Quark	q*	Triplet	1⁄2+	0.02	qg
Axigluon	Α	Octet	1+	0.05	qq
Coloron	С	Octet	1-	0.05	qq
Octet Technirho	ρ _{τ8}	Octet	1-	0.01	qq,gg
R S Graviton	G	Singlet	2-	0.01	qq,gg
Heavy W	W'	Singlet	1-	0.01	$\mathbf{q}_1 \overline{\mathbf{q}_2}$
Heavy Z	Ζ'	Singlet	1-	0.01	qq

- Dijet resonances are found in models that try to address some of the big questions of particle physics beyond the SM, the Higgs, or Supersymmetry
 - Why Flavor ? → Technicolor or Topcolor → Octet Technirho or Coloron
 - Why Generations ? → Compositeness → Excited Quarks
 - Why So Many Forces ? → Grand Unified Theory → W' & Z'
 - Can we include Gravity ? → Superstrings → E6 Diquarks
 - Why is Gravity Weak ? → Extra Dimensions → RS Gravitions

High-mass Dijet Resonances

Hadron Collider Physics Symposium 2008

Anomalous dijet + MET and LQ

- Started as signature-based
 - Leptoquark
 - Little Higgs (T-parity conserved)
 - UED (K-parity conserved)
 - MSSM (R-parity conservd)

Selections in 2.0 fb⁻¹ data

- 2 jets with E_T(j) > 30 GeV, |η| < 2.4
- No 3rd Jet with E_T > 15 GeV
- Veto isolated tracks and EM objects
- Two kinematic regions
 - Low: ΣE_T(j) > 125 GeV, MET > 80 GeV
 - High: ΣE_T(j) > 225 GeV, MET > 100 GeV

Data-driven background estimate

- $Z \rightarrow vv + jets$
- $W \rightarrow I v$ +jets with missing lepton
- Set limits on 3 generations of LQs with Q=1/3, 2/3, $\beta = 0$

Anomalous dijet + MET and LQ

Background	Background Number of Events		Number of Events	
Ζ-> ν ν	777 +/- 49	Ζ-> ν ν	71 +/- 12	
W -> τ ν	669 +/- 42	W-> τ ν	50 +/- 8	
W -> μ ν	399 +/- 25	W -> μ ν	33 +/- 5	
W->e ν	256 +/- 16	W -> e <i>ν</i>	14 +/- 2	
Z ->	29 +/- 4	Z ->	2 +/- 0	
Top Production	Top Production 74 +/- 9		11 +/- 2	
QCD	QCD 49 +/- 30		9 +/- 9	
Gamma plus Jet	55 +/- 13	Gamma plus Jet	5 +/- 3	
Non-Collision	4 +/- 4	Non-Collision	1 +/- 1	
Total Predicted	2312 ±/- 140	Total Predicted	196 +/- 29	
Total Tredicted		Data Observed	186	
Data Observed	2506			
Shin-Shan Yu	Hadron Collide	er Physics Symposium 2008	3	

3rd Generation Scalar LQ in ττbb

- Tau visible pt > 15 GeV for 1-prong, 20 GeV for 3-prong
- NN output > 0.9 for 1-prong, > 0.95 for 3-prong
- Mid-Cone jet algorithm, Et> 25, 20 GeV, |eta| < 2.5
- Muon pt > 15 GeV, |eta| < 1.6, tracking and calorimeter isolated
- No tight electron with pt > 12 GeV
- NN input
 - Tau mass
 - Profile of energy deposition
 - Track multiplicity
 - Isolation
- Loose NN b-tagging: output > 0.2, eff = 72.2 %, misID= 5.9 %
- 25-30% systematic uncertainties for the background, 16% for the signal

- Charge= 4/3, 2/3 LQ: M(LQ) > 180 GeV/c2
 - BR(LQ→τb) =1
- Charge= 2/3 LQ: M(LQ) > 180 GeV/c2
 - LQ→ t v is allowed, only suppressed by phase space, assume the same coupling for both decays
 - BR(LQ→τb) = 1 0.5 * Fsp

3rd Generation Scalar LQ in ττbb

y

Same Sign Tops

A heavy enough η^+ leads to 2 interesting MxFV textures that

are not excluded:

Same-sign Tops

	CDF Run II Preliminary (2 fb $^{-1}$)						
	$M_{\eta^0} [{ m GeV/c^2}]$	180	190	200	225	250	300
	σ [pb]	0.50	0.45	0.41	0.33	0.27	0.19
tt	ϵ [%]	0.5	0.5	0.5	0.5	0.5	0.5
	N	4.4	4.3	3.8	2.6	2.1	0.9
	σ [pb]	0.54	0.50	0.42	0.28	0.22	0.10
$tt\bar{u}$	ϵ [%]	0.5	0.5	0.5	0.5	0.5	0.5
	N	4.8	4.0	4.0	3.1	2.4	1.7
	σ [pb]	0.68	0.45	0.38	0.17	0.06	0.02
$tt\bar{u}\bar{u}$	ϵ [%]	0.5	0.5	0.5	0.5	0.5	0.5
	N	5.8	3.6	3.3	1.4	0.5	0.2
Tota	$N(l^{\pm}l^{\pm}b ot\!\!\!/_T)$	14.9	11.9	11.0	7.1	5.0	2.7

CDF Run II Preliminary (2 fb $^{-1}$)						
Source	ee	$\mu\mu$	$e\mu$	ll		
$Z \rightarrow ll$	0.01	0.03	0.04	0.1 ± 0.1		
tt	0.27	0.26	0.42	0.9 ± 0.1		
W + jets	0.60	0.71	0.50	1.8 ± 1.8		
Total	0.9	1.0	1.0	2.9 ± 1.8		
Data	0	1	2	3		

$ ext{CDF}$ Run II Preliminary (2 fb ⁻¹)							
Mass	180	190	200	225	250	300	
$\xi <$ (95% CL)	0.79	0.85	0.85	1.11	1.12	1.32	

$$ug \to t\eta^0 \to tt\overline{u} + h.c.$$
$$u\overline{u} \to \eta^0 \eta^0 \to tt\overline{u}\overline{u} + h.c.$$
$$uu \to tt + h.c.$$

Same-sign Tops

Hadron Collider Physics Symposium 2008

Heavy Long-lived Particles \rightarrow Z + X

- Predicted by several models
 - Long-lived 4th generation b' quark
 - GMSB
 - Extended Higgs sector
 - Hidden-valley model
- 1.1 fb⁻¹, displaced $Z \rightarrow ee + X$
- 2 EM objects matched to clusters in the preshower
 - E_T > 20 GeV, |η| < 1.1 each
 - No matched track to suppress DY
 - M_{ee} > 75 GeV/c²
- 2-D Vertexing in the transverse plane
 - EM object trajectory from 5 points (4 in EM CAL, 1 in Preshower)
 - Vertex radius Rxy: 2 cm resolution

Hadron Collider Physics Symposium 2008

- **Background has symmetric Rxy**
- Use neg-Rxy in data to estimate background in pos-Rxy
- No excess found
- Set Limit on b' mass and lifetime
 - Discriminant: pos-Rxy
 - Mass 100-190 GeV/c²

Heavy Long-lived Particles \rightarrow Z + X

- Calor. iso fraction < 7%
- Track iso < 2 GeV/c
- Mee calculated using z position from r-z vertexing
- Determinant $(\Delta X_1 \Delta Y_2 \Delta X_2 \Delta Y_1) > 4000 \text{ cm}^2$
Heavy Long-lived Particles \rightarrow Z + X

2-D vertexing in r- ϕ plane

2-D vertexing in r-z plane

Blue histograms are from almost-parallel electron pair

Technicolor ρ^{\pm} and ρ^{0}

Technicolor Straw Man Model

- M(V) = M(A) = 200 GeV/c2
- Q of up-type quark = 1
- Mixing angle between isotriplet technipion interaction and mass eigenstates as sinχ=1/3
- M(W) + M(techni-pion) < M(techni-rho) < 2 M(technipion)
- Excluded region

Μ(ρΤ) [GeV/c2]	M(πT) excluded region at 95% CL	
180	95	
190	105	
200	105-115	
210	115-125	
220	115-125	
230	125-135	
240	125-145	
250	135-145	

Technicolor ρ^{\pm} and ρ^{0}

Njet	2jet	3jet
Pretag Events	32242	5496
Mistag	$3.88 {\pm} 0.35$	2.41 ± 0.24
$W b \overline{b}$	37.93 ± 16.92	14.05 ± 5.49
$Wc\bar{c}$	$2.88 {\pm} 1.25$	1.52 ± 0.61
$t\bar{t}$ (6.7pb)	19.05 ± 2.92	54.67 ± 8.38
Single top(s-ch)	6.90 ± 1.00	2.28 ± 0.33
Single top(t-ch)	1.60 ± 0.23	1.43 ± 0.21
WW	$0.17 {\pm} 0.02$	0.15 ± 0.02
WZ	2.41 ± 0.26	$0.68 {\pm} 0.07$
ZZ	$0.06 {\pm} 0.01$	0.06 ± 0.01
$Z - > \tau \tau$	$0.25 {\pm} 0.04$	0.19 ± 0.03
nonW QCD	5.50 ± 1.00	2.56 ± 0.48
Total Bkg	80.62 ± 18.75	79.99 ± 10.92
$m(\rho^{\pm},\pi^0)=(200,115) \text{ GeV}$	11.24 ± 0.98	Control region
$m(\rho^0,\pi^{\mp})=(200,115) \text{ GeV}$	1.50 ± 0.16	Control region
Observed Events	83	88

2 tight b-tags

Shin-Shan Yu

Hadron Collider Physics Symposium 2008