

B Hadron Properties at the Tevatron

HCP2008 May 29, 2008

Mark Hartz (mhartz@fnal.gov) University of Pittsburgh

on behalf of the D0 and CDF Collaborations

- B physics at Tevatron
- B_c lifetime and mass measurements
- B_s lifetime measurements
- Heavy quarkonium polarization
- $\Xi_{\rm b}$ observation and mass

B Physics at the Tevatron

Large bb(bar) cross section, but still 1/1000 of total inelastic cross section

Dependant on triggers to get to B events (J/ ψ , displaced vertices, leptons)

Many states only accessible at Tevatron: $B_c \Lambda_b \Sigma_b \Xi_b$...

B physics probes many aspects of theory:

1) CKM Matrix

- 2) QCD parameters
- 3) BSM processes

4) Effective field theories – HQET, NRQCD, lattice QCD...

The B_c Meson

Two heavy (b and c) quarks, but decays weakly = unique laboratory for physics

<u>Mass</u> – potential models and lattice QCD calculations

<u>Decay</u> – both quarks contribute to width, expect shorter lifetime than B mesons, lots of decay modes

Theory predicts τ ~0.5 ps, but large uncertainties and model to model variation

Weak decay of b quark -> final states with J/ψ (nice signature for experiment)

Lifetime in B_c->J/\y+I+X (CDF)

- Select tri-lepton events
 - 2 muons reconstruct to J/ψ mass ~5.5 million candidates
 - 3rd lepton from same vertex: 1935 electron candidates 572 muon candidates
- Model missing momentum in signal events
- Model tri-lepton backgrounds
- Likelihood minimization of lifetime distribution using signal and background models

Signal Model

• MC requires assumptions about B_c production spectrum and branching fractions

- Missing neutrino means broad J/ ψ +I mass window for signal: 4-6 GeV/c²
- Also means missing momentum when measuring lifetime
- Correct using "K" factor from MC of B_c decays

Tri-lepton Backgrounds

Small B_c production compared to bb(bar) or cc(bar) -> rare events can be significant backgrounds:

1) J/ ψ continuum background with third lepton – easily modeled from J/ ψ mass sidebands

2) Hadrons faking third lepton – estimate fake rates for π , K from D^{*}->D⁰(π K) π and p from Λ ->p π

3) J/ ψ and lepton faking vertex (lepton from other b jet or photon conversion)

More on bb(bar) Background

- Double check agreement with data using impact parameter of third muon with respect to J/ψ vertex

- Realistic MC for bb(bar) background
- Uncertainties in the pp(bar)->bb(bar) production
- Tune Pythia sample using fit to $\Delta \phi (J/\psi \mu)$ in data with no $J/\psi \mu$ vetex requirements (left)

Mark Hartz

B_c Lifetime Results

B_c Lifetime (D0)

- Measurement using $B_c^{->J/\psi(\mu\mu)+\mu+X}$ decays
- D0 has excellent muon acceptance -> good match with 3 μ final state
- 180 GeV Similar backgrounds as CDF $DØ 1.3 \text{ fb}^{-1}$ — Total 160 measurement ຕ 140 ---- Signal Simultaneous mass, lifetime fit 120 J/ψ MC to help constrain backgrounds Events 100 — Prompt 80 Requires K factors to model missing momentum (similar to $- J/\psi + Track$ 60 CDF analysis) 40 20 9 5 10 *M*(*J*/ψμ) [GeV]

B_c Lifetime Result

- 14753 J/ ψ + μ candidate events
- Fit returns B_c yield of
 881±80 events

$$\tau = 0.448^{+0.038}_{-0.036}(stat.) \pm 0.032(syst.) ps$$

Mass templates are primary source of systematic uncertainty

arXiv:0805:2614v1[hep-ex]

World best measurement

B_c Lifetime Summary

Speaker's world average of B_c lifetime results:

 $\tau = 0.459 \pm 0.037$ ps

Compares to theoretical predictions that range (central values):

 $\tau = 0.47 - 0.59 \text{ ps}$

arXiv:hep-ph/0006104 Phy Rev. D 64, 14003 (2001) Phy Lett. B 452, 129 (1999) hep-ph/0002127 (and references within)

B_c Mass (D0)

- Using $B_c^{\pm}->J/\psi(\mu\mu)+\pi^{\pm}$ fully reconstructed = precise mass measurement
- Expect BR ~0.1 of semileptonic modes

B_c Mass (CDF)

Lifetime in the pipeline

B_s Lifetime Intro

$$B_{S}^{\theta} \underbrace{\begin{matrix} \overline{b} & W & V_{ts} & \overline{s} \\ u,c,t & u,c,t \\ s & V_{ts} & W & b \end{matrix}} \overline{B}_{S}^{\theta}$$

- Mass eigenstates ${\sf B}_{\!_{\rm S}}^{^{\,\rm H}}$ and ${\sf B}_{\!_{\rm S}}^{^{\,\rm L}}$ decay widths $\Gamma_{\!_{\rm H}}$ and $\Gamma_{\!_{\rm L}}$
- Define: $\Delta \Gamma = \Gamma_L \Gamma_H$ and $\Gamma_s = (\Gamma_H + \Gamma_L)/2$
- Assuming no CP violation, two kinds of measurements:

1) Flavor specific – measure a single exponential for $\Gamma_{\rm H}$ and $\Gamma_{\rm L}$ Actually measure:

$$\tau(B_s^0)_{\rm fs} = \frac{1}{\Gamma_s} \frac{1 + \left(\frac{\Delta\Gamma_s}{2\Gamma_s}\right)}{1 - \left(\frac{\Delta\Gamma_s}{2\Gamma_s}\right)^2}.$$

$$B_s -> D_s + \pi$$

$$B_s -> J/\psi + \phi$$

2) Measure $\Delta\Gamma$ and Γ_s directly – identify the CP eigenstates (angular analysis of decays)

• Heavy quark expansion predicts $\tau_s / \tau_d = 1.0 \pm 0.02 \ (\tau_d = 1.530 \pm 0.009 \ ps)$ PRD 70, 094031 (2004)

B₂->J/ψ+φ Angular Analysis

- Include angles describing decay in fit for τ and $\Delta\Gamma$
- For no CPV B^H_c=CP odd B^L_c=CP even
- Pseudo scalar->vector+vector: S,D wave (CP even) and P wave (CP odd)
- Angular distributions constrains CP even and CP odd components

16

<mark>Β</mark> Lifetime in <mark>Β</mark>->J/ψ+φ **10⁴** $L=1.7 \text{ fb}^{-1}$ CDF II Data DØ , 2.8 fb⁻¹ Candidates per 25 µm Data — Total Fit Fit $B_s^0 \rightarrow J/\psi \phi$ 10^{3} 10^{3} ----- Total Signal Signal Mass 5.26 - 5.46 GeV CP-even Background CP-even 10² 10² CP-odd ····· CP-odd Background Different lifetimes. 10 E 10 $\Delta\Gamma_s \neq 0$ 10_0.1 0.0 0.1 02 0.3 0.1 0.2 0.3 0.4 0.5 ct (cm) No CPV Allowed: ct [cm] **CPV Allowed:** $\tau = 1.52 \pm 0.04 (stat) \pm 0.02 (syst) ps$ $\tau = 1.52 \pm 0.05 (stat) \pm 0.01 (syst) ps$ $\Delta \Gamma = 0.19 \pm 0.07 (stat)^{+0.02}_{-0.01} (syst) ps^{-1}$ $\Delta \Gamma = 0.08 \pm 0.06 (stat) \pm 0.01 (syst) ps^{-1}$ No CPV Allowed: PRL 100, 121803 (2008) $\tau = 1.53 \pm 0.06 (stat) ps$ $\Delta \Gamma = 0.14 \pm 0.07 (stat) ps^{-1}$ arXiv:/0802.2255[hep-ex] HCP08 - 5/29/08

B_s Lifetime in B_s->D_s⁻(φπ)+π⁺+X (CDF)

- Flavor specific lifetime using $B_s^{->}D_s^{-}(\phi\pi)+\pi^++X$
 - Combines fully reconstructed and partially reconstructed modes
 - $B_s^->D_s^-(\phi\pi)+\pi^+$ and $B_s^->D_s^-(\phi\pi)+\rho^+$ $(\pi^+\pi^0)$ dominate
 - Partially reconstructed give >x2 statistics

HCP08 - 5/29/08

 Partially reconstructed decays ->
 model missing momentum in lifetimes (K factors)

Hadronic Trigger an Sample

- Events are triggered using the displaced vertex trigger
 - Two tracks with 120 μ m < d0 < 1 mm
 - Intersection >200 µm from primary vertex
- Introduces bias to lifetime
- Model with efficiency function from MC
- Check fitting procedure with other samples:
 - $B^0 \rightarrow D^-(K^+\pi^-\pi^-) \pi^+$
 - $B^{0} \rightarrow D^{*-}(D^{0}(K^{+}\pi^{-})\pi^{-}) \pi^{+}$
 - $B^+ \rightarrow D^0(K^+\pi^-) \pi^+$
- ~1100 fully reconstructed events
- ~2000 partially reconstructed events

B_s Lifetime Result

- 1) Fit of the mass distribution to set the relative fractions of decay modes
- 2) Likelihood minimization to fit ct distribution and extract lifetime

$$\tau = 1.518 \pm 0.041 (stat.) \pm 0.025 (syst.) ps$$

*World best flavor specific

080207.blessed-bs-lifetime/http://www-cdf.fnal.gov/physics/new/bottom/

B_s Lifetime Summary

- $D_s + \pi + X$ contributions to flavor specific world average
- Larger values consistent with J/ ψ + ϕ results

- HFAG for PDG 2008 includes CDF $J/\psi {+} \varphi$
- Recent results suggest $\tau_{_{\rm s}}/\tau_{_{\rm d}}$ ~1
- $\tau_{s}^{\prime}/\tau_{d}^{\prime}$ = 0.939±0.021 as of HFAG 2007
- Recall $\tau_{s} / t_{d} = 1.0 \pm 0.02$ from HQE

HCP08 - 5/29/08

J/y Polarization (CDF)

- NRQCD predicts S-wave quarkonium should be transversely polarized for sufficiently large \textbf{p}_{τ}

Mark Hartz

Y(nS) Polarization (D0)

- •Fit di-muon mass in $p_{_{T}}$ and $cos\theta^*$ bins for Y(nS) normalizations
- •Two types of mass fits
 - Data driven all parameters determined by fit
 - MC driven asymmetric tail from MC (used for normalizations)
- ~260,000 Y(nS) events

arXiv:0804.7299[hep-ex]

α for 1S State Compared to Models

- Measure α from $\text{cos}\theta^*$
- See α >1 at high p_{τ} but:

1) Disagreement with CDF Run 1 measurement

2) Not a good match to NRQCD or k_t factorizatoin

 CDF Run II result would help understand data discrepancy

Continued work on theoretical models

Y(2S) Polarization

HCP08 - 5/29/08

E_b Observation and Mass (D0)

HCP08 - 5/29/08

Conclusions

- D0 and CDF are making many exciting measurements
- In Run II we have greatly improved the precision in $\rm B_{c}$ measurements start to feed back to models
- Recent B_s lifetime measurements suggest $\tau_s/\tau_d = 1$
- Mystery of the quarkonium polarization
- Exciting direct observation of the $\Xi_{\rm b}$
- Many interesting topics not covered in this talk: $\Lambda_{_{\rm b}}, \Sigma_{_{\rm b}}$, orbitally excited B mesons, etc.

http://www-d0.fnal.gov/Run2Physics/WWW/results/b.htm http://www-cdf.fnal.gov/physics/new/bottom/bottom.html

Extra Slides

The Tevatron

pp(bar) collisions at sqrt(s)=1.96 TeV

Peak instantaneous luminosities of 3x10³² cm⁻²s⁻¹

~4 fb⁻¹ delivered so far

HCP08 - 5/29/08

Mark Hartz

DTO

evatron

Main Injector/

CDF & D0 Detectors

Complementary Strengths

CDF

- Precision tracking
 - Mass $-\delta p_T/p_T = 0.0015 p_T$
 - Position $\sigma_{ct} \sim 25$ mm
- Particle ID with time-of-flight, dE/dx

<u>D0</u>

- Muon Coverage
- Forward tracking
- Coverage
- to |η |= 2 Addition of inner silicon layer