

SM Higgs Searches at the LHC

Maiko Takahashi Imperial College London / University of Manchester

on behalf of the ATLAS and CMS Collaborations

HCP2008, Galena IL

LHC Experiments

FR

Overall view of the LHC experiments.

Large Hadron Collider (LHC)

- proton-proton collision @ 14 TeV
- nominal luminosity = 10^{34} cm⁻²s⁻¹
- collision every 25 ns
- two general purpose detectors

M. Takahashi

LHC Experiments

LHC - B

Point 8

Overall view of the LHC experiments.

CMS Point 5

Large Hadron Collider (LHC)

- proton-proton collision @ 14 TeV
- nominal luminosity = 10³⁴ cm⁻²s⁻¹
- collision every 25 ns
- two general purpose detectors

A Toroidal LHC ApparatuS (ATLAS)

- continuous tracking using TRT
- liquid Ar + scintilating tile calorimeter
- solenoid + toroid magnets

3-level trigger

CERN

Point 1

• 25 m (Ø) x 46 m (L), 7 ktons

ALICE Point 2

- all silicon central tracker
- crystal (PbWO4) EM calorimeter
- solenoid magnet (4 Tesla)
- Ø 15 m x L 21.6 m, 12.5 ktons
- 2-level trigger

LHC - B ATLAS

Discovery of Higgs boson is one of the important goals of ATLAS and CMS

M. Takahashi

SM Higgs Production at LHC

SM Higgs Searches at the LHC, HCP2008

Gluon fusion (gg \rightarrow H) dominates (10's pb)

M. Takahashi

Vector-boson fusion ($qq \rightarrow qqH$) 2nd dominant and becomes comparable to $gg \rightarrow H$ at very high mass

HO

W, Z bremsstrahlung

ÉRN

SM Higgs Branching Ratio

M. Takahashi

Low Mass Higgs Searches

CERN

Channels for low mass Higgs searches

- $\bullet \quad \mathsf{H} \to \mathsf{Y}\mathsf{Y}$
- $H \rightarrow \tau \tau (qqH)$
- $H \rightarrow bb (ttH)$

$H \rightarrow \gamma \gamma$

- Promising for early discovery in low mass scenario
- Small branching ratio + large background (prompt yy, y + jets, ...)
 → Fit the well-defined side band of M(yy) shape to estimate
 → good energy resolution, isolation and photon ID are crucial

M. Takahashi

- Analysis Strategies
 - Cut-based initial analysis + further optimisation

 \rightarrow Likelihood or Neural Net based on kinematic variables (e.g. p_T of $\gamma\gamma$ system, photon decay angle, isolation parameters)

- Categorised optimisation
 - jet multiplicity
 - detector region
 - γ shower shape

M. Takahashi

$H \rightarrow \gamma \gamma$: Sensitivity

- Separating into categories increases the combined sensitivity
- Discovery possible for low mass range at 10 fb⁻¹
 (~1 year at low luminosity of 2x10³³ cm⁻²s⁻¹)

TRI

qqH, H $\rightarrow \tau\tau$

- $H \rightarrow \tau \tau$ combined with Vector–Boson Fusion (VBF) production
- Signatures $(\tau \tau \rightarrow I + \tau_h)$: electron or muon + hadronic decay of τ lepton + missing E_T + forward-backward quark jets
- Analysis Strategies
 - Kinematic cuts on VBF jets: $\Delta\eta$, $\Delta\phi$, M(jj)
 - Veto events with central jets or tracks between the VBF jets
 - → hadronic activities different for VBF and QCD process

$qqH, H \rightarrow TT$ (e.g. $\tau \tau \rightarrow I_{+}\tau_{h}$)

- Reconstruction of TT mass
 - Partial mass, $M(I\tau_h)$, using only visible decay
 - Full mass, $M(\tau\tau)$, with collinear approximation

M. Takahashi

Assume neutrinos are collinear with the visible decay \rightarrow project E_T^{miss} to get full τ energy

- Methods to estimate background from data
 - $Z \rightarrow \tau \tau$ shape extracted from $Z \rightarrow \mu \mu$ data (μ replaced by simulated τ)
 - $Z \rightarrow ee$ shape extracted by inverting the electron rejection cut for hadronic τ ID (efficiency evaluated from Tag & Probe)

FRI

qqH, H $\rightarrow \tau \tau$: Sensitivity

- 5σ discovery within the reach at 30 fb^{-1} (~3 years of low luminosity)
- Exclusion at 95% CL is possible at 10 fb⁻¹ for most of the mass range concerned

SM Higgs Searches at the LHC, HCP2008

CÉRN

ttH, $H \rightarrow bb$

Large decay branching fraction for low mass but difficult because of hadronic final state
 → combine with tt fusion production
 (high jet multiplicity + b-tagging
 + W decays to reduce background)

Additional combinatorial background from 4 b's in the signal process

Background uncertainty

 $(\Delta B/B)$ needs to be small $(\sim few \%) \rightarrow very challenging$

Higher Mass Higgs Searches

Channels for intermediate – high mass Higgs searches

- $H \rightarrow WW$
- $H \rightarrow WW (qqH)$
- $H \rightarrow ZZ$

$H \rightarrow WW$

- Very powerful channel for intermediate Higgs mass range
- Challenging because of missing E_T involved in W decay
 - → "Counting Experiment"
 - → Precise background estimate is very important
- Analysis Strategies
 - Selection based on kinematic variables: di-lepton angular separation, di-lepton mass, E_T^{miss}, ...
 - Central jet veto (effective against the dominant tt background)
 - Multivariate technique to increase the sensitivity

$H \rightarrow WW$

- Spin correlation of two leptons:
 Spin 0 Higgs constrains the spin configuration of the final state leptons
 - → small angular separation

- Background Estimation:
 Normalisation to data using control samples selected with additional and/or inverted cuts
 - e.g. WW background
 - \rightarrow extract from high $\Delta \phi_{II}$ region

$H \rightarrow WW$

uncertainties in background estimate

$H \rightarrow ZZ \rightarrow 4$ leptons

M. Takahashi

SM Higgs Searches at the LHC, HCP2008

ER

$H \rightarrow ZZ \rightarrow 4$ leptons

- "Golden Channel" with 4 leptons (electrons or muons)
 - → very clean signature with small backgrounds
 - → excellent e/μ reconstruction using ATLAS and CMS detectors (particularly important for low p_T leptons to access low mass Higgs) → no hadronic objects nor neutrinos involved
- Set as the original bench mark for the design of the detectors
- Analysis Strategies
 - Tight lepton identification and selection (quality, charge, vertex)
 - Di-lepton mass reconstruction to select a pair of Z bosons
 - Irreducible ZZ background estimated from side bands of M(ZZ) or by normalising to the measured Z cross section
 - Higher order correction applied for $qq \rightarrow ZZ$ cross section

$H \rightarrow ZZ \rightarrow 4$ leptons

SM Higgs Searches at the LHC, HCP2008

ER

TFR SM Higgs Discovery Reach Signal significance • $\mathbf{H} \rightarrow \gamma \gamma$ • $\mathbf{tt} \mathbf{H} (\mathbf{H} \rightarrow \mathbf{bb})$ → H→γγ cuts $\int \mathbf{L} \, \mathbf{dt} = 30 \, \mathbf{fb}^{-1}$ (no K-factors) —— H→γγ opt $H \rightarrow ZZ^{(*)} \rightarrow 41$ $H \rightarrow WW^{(*)} \rightarrow lvlv$ — H→ZZ→4I ATLAS 10² $qqH \rightarrow qqWW^{(*)}$ – H→WW→2l2v $qqH \rightarrow qq \tau \tau$ qqH, H→WW→lvjj Total significance • ggH, H→ττ→l+jet —— qqH, H→γγ Significance \cap 10 CMS 30 fb⁻¹ 1 400 500 600 100 200 100 120 140 160 180 200 300 $m_{\rm H}$ (GeV/c²) M_µ,GeV/c²

- $H \rightarrow ZZ/WW$ channels contribute significantly to the sensitivity
- Combination of all channels provide 5σ discovery at all mass points above the LEP limit after a few years of data

ATLAS+CMS Combined Reach

- Combined limits based on "old" results
- Studies on-going with improved simulation & analysis techniques

→ Updated results from ATLAS and CMS expected to be public very soon

SM Higgs Searches at the LHC, HCP2008

CERN

Summary

- ATLAS and CMS are very active in evaluating the potential of the SM Higgs searches at the LHC
- Several different Higgs boson production + decay channels are extensively studied for an extended range of Higgs mass
- Results look promising, demonstrating that the discovery is well within the reach during the early years of the LHC operation

