

Richard E. Hughes The Ohio State University for The CDF and DO Collaborations

Low Mass SM Higgs Search at the Tevatron

Constraints on the SM Higgs

Low Mass Final States

$$\begin{array}{l} WH \to \ell \nu b \bar{b} \\ ZH \to \ell \ell b \bar{b} \\ ZH \to \nu \nu b \bar{b} \\ WH \to (\ell) \nu b \bar{b} \end{array}$$

4

The Challenge...

 Higgs Production is a low rate process at the Tevatron. Backgrounds are many orders of magnitude larger. •Challenge: Separate Signal from Background

The Challenge...

 Higgs Production is a low rate process at the Tevatron. Backgrounds are many orders of magnitude larger. •Challenge: Separate Signal from Background

Before Anything S:B ~ 1:10¹¹

Identification of High Pt Leptons

- Most final states produced by Higgs decay involve high-Pt leptons.
- CDF and D0 have efficient lepton triggers and high purity ID selection
- Tau leptons are also starting to contribute

Identification of B-jets

7

Btagging

- \sim 50-70% efficient
- Dependent on E_T and η of jet.
- Mistag rates typically $\sim 0.3 5\%$
- Loose tagging helpful in double tag situations
- D0 uses NN tagger based on 7 discriminating B-lifetime variables
- CDF uses secondary vertexing algorithm
- New tagging: Neural network using flavor separation

Using Advanced Algorithms

- Variety of methods: Artificial Neural Networks (ANN), Boosted Decision Trees (BDT), Matrix Element (ME)
- Example: ANN can be used to combine information from different kinematic variables: both Energy-based and Shape-based
- Improved discrimination and less sensitive to systematic effects
- Tested using already observed physics processes: identification of top in Lepton plus jets

Using Advanced Algorithms

- Variety of methods: Artificial Neural Networks (ANN), Boosted Decision Trees (BDT), Matrix Element (ME)
- Example: ANN can be used to combine information from different kinematic variables: both Energy-based and Shape-based
- Improved discrimination and less sensitive to systematic effects
- Tested using already observed physics processes: identification of top in Lepton plus jets

- Two High P_T Leptons
- No (direct) Missing E_T
- 2 jets
 - Split up 1 and 2 b-tags

Features:

- 1. Small $\sigma \cdot BR$
- 2. Several tight constraints
 i. M₁₁ ≅ M_z
 ii. "₽_T" → improve jet resol.
- 3. $\sim 1 \text{ evt}/\text{fb}^{-1}$

Primary Backgrounds $Zb\bar{b}, Zc\bar{c}, Zqq'$ $t\bar{t}$ WW + jj, WZ, ZZ $Z \rightarrow \tau\tau$

- Two High P_T Leptons
- No (direct) Missing E_T
- 2 jets
 - Split up 1 and 2 b-tags

Features:

- 1. Small σBR
- 2. Several tight constraints i. $M_{ll} \cong M_z$
- ii. " $\not E_T$ " \rightarrow improve jet resol. 3. ~1 evt/fb⁻¹

Primary Backgrounds

$$Zb\bar{b}, Zc\bar{c}, Zqq'$$

 $t\bar{t}$
 $WW + jj, WZ, ZZ$
 $Z \rightarrow \tau\tau$

Lepton types: ee and µµ b-Tagging: 1Tight tag 2Loose Tag

ANN M_{bb} , $P_T^{j_1}$, $P_T^{j_2}$, $\Delta R_{\ell\ell}$, Inputs $|\Delta \eta_{jj}|$, $|\Delta \phi_{jj}|$, ΔR_{Z-j_1} , $|\eta_Z|$, MET, ΣE_T^i

Tagging split into double tag and single Tag

2D ANN $E_{\mathbf{T}}, H_T, M_{jj}, Sph, \eta_{j_2}$ Inputs $\Delta R_{j_1,Z}, \Delta R_{j_2,Z}, \Delta R_{j_1,j_2}$

Lepton types: ee and µµ b-Tagging: 1Tight tag 2Loose Tag

ANN M_{bb} , $P_T^{j_1}$, $P_T^{j_2}$, $\Delta R_{\ell\ell}$, Inputs $|\Delta \eta_{jj}|$, $|\Delta \phi_{jj}|$, ΔR_{Z-j_1} , $|\eta_Z|$, MET, ΣE_T^i

Tagging split into double tag and single Tag

2D ANN $E_{\mathbf{T}}, H_T, M_{jj}, Sph, \eta_{j_2}$ Inputs $\Delta R_{j_1,Z}, \Delta R_{j_2,Z}, \Delta R_{j_1,j_2}$

Most Higgs-like Event RUN 196170 EVENT 6577

11

S:B ~ 1:4

- **9% Z+cc**
- **9% ZZ**
- 5% Z+qq (light)

Experiment	periment Lum		Exp/SM	
D0 1.1 fb ⁻¹		17.8	20.4	
CDF	1.0 fb ⁻¹	16	16	

 $M_{\rm h} = 115 \; {\rm GeV} \, / \, {\rm c}^2$

$ZH \rightarrow \nu\nu b\bar{b}$ Channel

- No High P_T Leptons
- Large Missing E_T
- 2 jets
 - Require 2 b-tags

Features:

- Trigger is more challenging
 Large QCD/Fake Bkg: Difficult
 Simulate: use data
- 3. Use tracks to help bkg identification.
- 4. Large contribution (~35%) from WH

5.
$$\sim$$
2-3 evts/fb⁻¹

Primary BackgroundsQCD Heavy Flavor, $t\bar{t}, W/Z + b\bar{b}/c\bar{c},$ Single Top,ZZ, WZ, WW

$ZH \rightarrow \nu\nu b\bar{b}$ Channel

- No High P_T Leptons
- Large Missing E_T
- 2 jets
 - Require 2 b-tags

Features:

- Trigger is more challenging
 Large QCD/Fake Bkg: Difficult
 Simulate: use data
- 3. Use tracks to help bkg identification.
- 4. Large contribution (~35%) from WH

5.
$$\sim$$
2-3 evts/fb⁻¹

$ZH \rightarrow \nu\nu b\bar{b}$ Discriminants

Double b-tagging (loose +tight) required. Boosted Decision Tree Inputs: 24 variables

double tight btag 1 tight + 1 loose btag

ANN Inputs M_{bb} , MET, $\Delta R_{j_1-j_2}$, $MET_{cal} \cdot MET_{trk}$, $Trk_{NN_{14}}$

$ZH \rightarrow \nu\nu b\bar{b}$ Discriminants

Double b-tagging (loose +tight) required. Boosted Decision Tree Inputs: 24 variables

double tight btag 1 tight + 1 loose btag

ANN Inputs M_{bb} , MET, $\Delta R_{j_1-j_2}$, $MET_{cal} \cdot MET_{trk}$, Trk_{NN_4}

$ZH \rightarrow \nu\nu b\bar{b}$ Limits

Experiment	periment Lum Obs/SN		Exp/SM	
D0	2.1 fb ⁻¹	7.5	8.4	
CDF	1.7 fb ⁻¹	8.0	8.3	

 $M_{\rm h} = 115 \; {\rm GeV} \, / \, {\rm c}^2$

$WH \rightarrow \ell \nu b \overline{b}$ Channel

$WH \rightarrow \ell \nu bb$ Discriminants

Lepton types: elec and muon Two b-Tagging: 1 double tag 1 single Tag ANN $P_T^{j_1}, P_T^{j_2}, \Delta R_{jj}, \Delta \phi_{jj},$ $P_T^{jj}, M_{jj}, P_T^{\ell-MET}$ Inputs

Lepton types: Central and Forward b-Tagging: 2 double tag 1 Single Tag using NN ANN $M_{jj}, P_T^{imb}, P_T^{sys},$ Inputs $M_{\ell\nu i}^{min}, \Delta R_{\ell\nu}, E_T^{jets}$

$WH \rightarrow \ell \nu bb$ Discriminants

Lepton types: elec and muon Two b-Tagging: 1 double tag 1 single Tag ANN $P_T^{j_1}, P_T^{j_2}, \Delta R_{jj}, \Delta \phi_{jj},$ $P_T^{jj}, M_{jj}, P_T^{\ell-MET}$ Inputs

Lepton types: Central and Forward b-Tagging: 2 double tag 1 Single Tag using NN ANN $M_{jj}, P_T^{imb}, P_T^{sys},$ Inputs $M_{\ell\nu i}^{min}, \Delta R_{\ell\nu}, E_T^{jets}$

$WH \rightarrow \ell \nu b \overline{b}$ Limits

Experiment Lum		Obs/SM Exp/	
D0	1.7 fb ⁻¹	10.9	8.9
CDF	1.9 fb ⁻¹	8.2	7.3

 $M_{\rm h} = 115 \; {\rm GeV} \, / \, {\rm c}^2$

Adding Acceptance to WH: ISOTrack

19

Look for WH events which fail standard lepton selection
Use MET + 2jet trigger
Only use track info: no CAL or Muon chamber info
Increases acceptance by 25%!

Adding Acceptance to WH: ISOTrack

Look for WH events which fail standard lepton selection
Use MET + 2jet trigger
Only use track info: no CAL or Muon chamber info

• Increases acceptance by 25%!

 $\bar{p}p \to H \to \gamma \gamma$

Expected rate low (BR ~0.22% @ Mh=130 GeV)
BUT, every little bit helps and nature could be different.

Observed	13827	
Z->ee	741+/-102	MC
jet jet	4779+/-1265	data
gamma jet	4677+/-1246	data
QCD gamma	3400+/-711	MC

 $\bar{p}p \to H \to \gamma \gamma$

Expected rate low (BR ~0.22% @ Mh=130 GeV) BUT, every little bit helps and nature could be different.

Observed	13827	
Z->ee	741+/-102	MC
jet jet	4779+/-1265	data
gamma jet	4677+/-1246	data
QCD gamma	3400+/-711	MC

 $\bar{p}p \to H \to \gamma\gamma$

Expected rate low (BR ~0.22% @ Mh=130 GeV) BUT, every little bit helps and nature could be different.

 $H \rightarrow \tau \tau$ Plus 2 Jets

- Require 1 hadronic tau and 1 opp sign Lepton (45%BR)
- 2. Uses lepton+track trigger
- 3.1 and 3 prong taus
- 4. Two jets and Z veto

Process	Evt (2fb ⁻¹)
WH	0.18
ZH	0.11
VBF	0.12
ggH	0.26
Total	0.67
Background	374

 $H \rightarrow \tau \tau$ Plus 2 Jets

Minimum of 3 trained Networks: NN(Signal vs Z→ττ) NN(Signal vs tt) NN(Signal vs QCD) $H \rightarrow \tau \tau$ Plus 2 Jets

Conclusion: Tevatron Combination

	Channel	CDF Limits: σxB/SM obs (exp)	DZero Limits σxB/SM obs (exp)
	$WH \to \ell \nu b \overline{b}$	8.2 (7.3)	10.9 (8.9)
	$ZH \to \ell\ell b\bar{b}$	16 (16)	17.8 (20.4)
	$ZH \to \nu \nu b \overline{b}$	8.0 (8.3)	7.5 (8.4)
	H ightarrow au au adds 10	30.5 (24.8)	-
/	$\bar{p}p \to H \to \gamma\gamma$	_	~50
	Combined	4.95 (4.6)	6.4 (5.5)
	Tevatron Combined	3.7	(3.3)

 $M_H = 115 ~{\rm GeV/c^2}$

Conclusion: Tevatron Combination

Conclusion: Tevatron Combination

Improvements in the Higgs analyses have been exceeded that expected from more data

- Analyses can add ideas from other channels
 - e.g. Use of flavor separation NN for single tags
- Combination of techniques within channels
 - e.g. Combine ME plus NN
- Some new ideas still out there? (WH Isotrack added 25%!)

Improvements in the Higgs analyses have been exceeded that expected from more data

- Analyses can add ideas from other channels
 - e.g. Use of flavor separation NN for single tags
- Combination of techniques within channels
 - e.g. Combine ME plus NN
- Some new ideas still out there? (WH Isotrack added 25%!)

one good idea

from discovery.....

C

Improvements in the Higgs analyses have been exceeded that expected from more data

- Analyses can add ideas from other channels
 - e.g. Use of flavor separation NN for single tags
- Combination of techniques within channels
 - e.g. Combine ME plus NN
- Some new ideas still out there? (WH Isotrack added 25%!)

