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The Tevatron

● Collides pp at 1.96 TeV

– Still world's highest energies!

– Two multipurpose detectors, 
CDF and D0

● Beam luminosity has been 
steadily improving

– Total of ~4 fb-1 has been 
delivered to each detector

● About 80% data 
acquisition efficiency

● Recent analyses use 
about 2 fb-1

– Recently accumulated more 
than 50 pb-1 in one week!
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The Detectors
● Both detectors have a similar 

design

– Geared to study and 
search for all kinds of 
different phenomena

– Tracking inside of 
calorimetry inside of 
muon systems

● Specialties

– CDF has very good 
central tracking

– D0 has very good muon 
coverage

Tracking

Calorimetry

Muon 
Systems
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The Top Quark
● Have produced thousands of tt events 

at the Tevatron

– Are they all Standard Model top?

– Measure cross section: check for 
consistency & SM deviations

● The top quark mass can teach us 
about the Higgs

– The top quark and the Higgs both 
couple to the W boson

– Top mass and W mass determine 
SM Higgs mass

● Measure to constrain Higgs 
mass

● Test of standard model

1-Sigma Constraint on 
Higgs mass (2006)

Higgs and top quark 
couplings to W boson
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tt Production
● The top ~always decays to Wb

– W can decay leptonically or 
hadronically

– Usually focus on electron or 
muon lepton decays

● Signature:

– Dilepton Channel: two leptons, two neutrinos, two b-quarks (5 %)

– Lepton+Jets Channel: one lepton, one neutrino, four quarks (two 
b's) (29 %)

– All Hadronic Channel: six quarks (two b's) (44 %)

– Look for the appropriate particles to find ttbar events
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Identifying tt

● In practice we might see something like this

– Is it tt?
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b-Identification (Tagging)
● Identify b's to understand events

● Many possible approaches

– Displaced vertices (use long 
lifetime of b's)  (favored by CDF)

– Neural Network (favored by D0)

● Uses displaced vertex and 
other track and jet information 

– Look for “soft” leptons

● Electrons or muons often in b-
decay chain

● Less efficient, but 
complementary information

Can identify b's from displaced 
secondary vertex



8

Identifying tt
● This event can be b-tagged by eye (soft muon tagging)

– So this is probably an electron+jets tt event
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Cross Section/Mass Connection

● Measure cross section from excess 
of events in data

– Normalize by efficiency, 
acceptance, luminosity

● A more massive top quark is harder 
to produce

– Expect cross section of ~6.7 pb 
for top mass of 175 GeV/c2

● Can indirectly determine mass from 
a cross section measurement

– And vice versa

– D0 results with 0.9 fb-1 of data

D0 With world average top mass 
(172.6 GeV/c2)

D0 Measured vs theoretical cross sections:



10

Cross Section in Dilepton Channel

● Dileptons channel statistically limited so 
can loosen cuts

– Loosen cuts on one lepton: “lepton 
plus track analysis”

– Can choose not to b-tag

● Have to contend with Drell Yan and 
W+fake lepton backgrounds

– For no b-tag with lepton+tracks cuts 
signal fraction ~60-70%

– With b-tagging and dilepton cuts 
background fraction can drop to 
~10% with loss of half of statistics

CDF Lepton + Track Results

D0 Dilepton Results

CDF lepton+tracks results (1.1 fb-1)

D0 lepton+tracks and dilepton combination (1.0 fb-1)
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Using Alternate/No b-tagging in LJ Channel

● Using no b-tagging:

– D0: kinematic likelihood fit using 
angles, momentum sums, and event 
shapes

● Better systematic, worse 
statistical error than for b-tagging

– CDF: neural network based on 
similar kinematic variables

● Using soft lepton tagging

– Electrons or muons inside of jet

– Veto if consistent with dilepton decay 
from Z, J/Psi, or double semileptonic 
decay

D0 Likelihood Discriminant (0.9 fb-1)

CDF Neural Network (no b-tagging) (0.8 fb-1)

CDF Soft muon tagging (2.0 fb-1)

CDF Soft electron tagging (2.0 fb-1)

D0 Likelihood+b-tag Combination (0.9 fb-1)
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Tauonic Cross Sections
● Can also study tauonically decay channels

– Much larger backgrounds

– Cross section excess: possibly a sign of charged Higgs decays

– Consider all hadronically decaying tau types

– Analyses with 1.0 and 1.2 fb-1 performed and combined

D0 Lepton+Tau Channel: (2.2 fb-1)
● Taus separated from jets and 

electrons with neural networks 
depending on ...

– Shower shape, cluster energies, 
track-calorimeter agreement

D0 Tau plus Jet channel: (0.4 fb-1)
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All Hadronic Cross Section

● Have to contend with enormous 
QCD background

– B-tagging essential

● Also use Neural Network event 
selection to reduce background

– sum ET, event shape 
information, parton angles

– Measure angles based on 
center of mass frame of all 
jets

– Extract backgrounds based 
on b-tag and mistag rate 
parameterization from 4-jet 
control region

CDF Neural Network Output

D0 Results, lifetime b-tagging, 0.4 fb-1

CDF Results, 1.0 fb-1
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Cross Section Summary

● Both collaborations find results 
consistent with standard Model 
expectations
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Determining the Mass

● Event reconstruction challenges:

– Which partons came from which top 
and which W?

● Jet reconstruction challenges:

– Are you reconstructing the 
complicated data in your calorimeter 
towers correctly?

– Does your Monte Carlo reconstruct 
jets consistently?

– Left with the Jet Energy Scale (JES) 
uncertainty of  ~3-4 GeV on top 
mass

● Largest uncertainty on world 
average top mass

Which jets belong to 
which invariant mass?

Calibrated JES  
Uncertainties
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Controlling the JES Uncertainty

Example of a Simultaneous Fit

● Option 1: Perform “in-situ” JES 
calibration

– Require the W mass to reconstruct 
correctly

– Assume all other jets have same Jet 
Energy scale uncertainty

– Do simultaneous fit to top mass and 
JES

● Uncertainty becomes statistical

● Residual systematics remain (~0.8 GeV)

– JES for b-jets vs light flavor jets

– JES variation based on jet properties

M
T
 Dependence on JES
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Controlling the JES Uncertainty

● Option 2: directly measure top mass 
using quantities unrelated to jet energy

– Decay length of b-tagged jets

– Transverse momentum of leptons

– These measurements should have 
minimal correlation to other mass 
analyses

– Statistical limitations will be no 
problem at the LHC

● Systematic uncertainties should 
also improve with statistics

● Only JES dependence is through jet 
energy event selection cuts

– Methods could easily be applied to 
dilepton channel

CDF Lepton Transverse Momentum Results

Results with 1.9 fb-1 
in Lepton+Jets Channel:

CDF Decay Length

CDF Lepton Transverse  Momentum

Combined
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Template Based m
T

● Template Method

– Make probability distribution functions (templates) for signal and 
backgrounds

● Fit data, integrating over all allowed jet and lepton 
combinations

Signal chisquare for CDF Lepton+Jets analysis

m
T
 Constraints

m
W
 Constraints

Measurement Constraints Unclustered Energy 
Constraints
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CDF Template Method Results

CDF All Hadronic Mass 
Templates

CDF Combined Dilepton L+J
Likelihood Results

● In-situ JES calibrations performed

● All-hadronic channel: CDF uses same neural network as for cross section 
measurement

– Parameterize templates with Gaussian+Lorentzian fits

CDF Combined Dilepton 
and L+J Results (1.9 fb-1) CDF All Hadronic Results (1.9 fb-1)
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Dilepton Template Mass
● Template Method (Neutrino Weighting)

– Integrate over unknown 
pseudorapidities of neutrinos

– Weight solutions by agreement 
with Missing ET

● Template Method (Matrix Weighting):

– Weight solutions by consistency 
with lepton energies and PDF

● Evaluate mass event by event

– D0: Smear momenta within 
detector resolution

D0 Matrix and Neutrino Weighting 
Combined (1.0 fb-1)

D0 Matrix Weighting Results

CDF Dilepton Neutrino 
Weighting

CDF Neutrino Weighting (1.9 fb-1)
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Matrix Element m
T

● Attempt to extract more information from each event

– Find mass likelihood event by event based on signal probability 
from theoretical Matrix Element calculation and background 
probability

– Integrate over all unknowns with probabilistic weighting

– Example: D0 Lepton plus jets measurement

b-tagging probability Parton Distribution 
Functions

Sum over jet and flavor 
combinations

Matrix Element from theory

Transfer Functions: Probability 
of observing momenta x given 

real momenta y and JES

Signal Probability Proportional to ...
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Matrix Element m
T

D0 Lepton+Jet Results

● Evaluate total mass probability 
simultaneously with JES and signal fraction

– In-situ JES calibration performed where 
possible

– Expression for background probability 
uses different Matrix Element (no mass 
dependence)

CDF Lepton+Jets (1.9 fb-1)

D0 Lepton+Jets (2.1 fb-1)

CDF All Hadronic (1.9 fb-1)

CDF All Hadronic Results

CDF Dilepton (1.9 fb-1)
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Mass Combinations

D0 Mass Combination

CDF Mass ResultsD0 Results since Combination
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D0+CDF Combination
● Using Best Linear Unbiased Estimator technique

– Correlations estimated between 12 types of uncertainties

● Electroweak fits: SM Higgs mass now < 160 GeV/c2 at 95% confidence level!

– With LEP lower limit of M
H
>114 GeV/c2: upper limit rises to 190 GeV/c2
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Future Improvements

● Cross section results will continue to 
improve with statistics

– All channels stand to benefit

● Mass results are now more 
systematically limited

– But even without systematic 
improvements will have better than 
1% precision at both experiments

– Work on improving systematics still 
ongoing

● Have a good track record of 
success: already far ahead of 
where we projected we would 
be at this luminosity!

Past Expectations and Future M
T
 

Projections at CDF
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Summary and Outlook

● Cross section results are precise in some channels

– But others could still be hiding non tt physics

– Can push these uncertainties down with higher statistics

● Top mass known to high precision, but work remains

– Understanding the Higgs will take further improvements

– With higher statistics can greatly reduce the jet energy scale 
uncertainty in all channels

● Using in-situ calibration and alternate variables

– QCD radiation uncertainties will play a larger role

– New, subtle uncertainties will have to be understood

– Are we really measuring the pole mass?
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