THEORY OF W/Z + JETS AND HEAVY FLAVOR

JOHN CAMPBELL

19TH HADRON COLLIDER PHYSICS SYMPOSIUM 2008

INTRODUCTION

- W and Z bosons are produced at an extremely high rate at both the Tevatron and the LHC.
- Such events contain additional radiation, mostly soft.
- Hard radiation is not that expensive; naive estimate of suppression by α_s(m_W) about right.

each extra jet gives one more α_s

Plenty of events compared to top and Higgs/NP processes.

MOTIVATION

■ Tag W/Z decay→ final state: lepton(s)+(missing energy)+jets; background to many search channels at the Tevatron and LHC.

- supersymmetry and other models for new physics provide plenty of sources of missing energy and jets.
- Validation of theoretical tools with plenty of data.
- Benchmark for next round of backgrounds, e.g. top + jets, and hopefully for signals at the LHC too!

THEORY APPROACHES

- Theoretical predictions are mostly based on two approaches.
- Fixed order QCD perturbation theory.
 - easy at LO but limited at NLO, almost no-go at NNLO;
 - one parton per jet at LO, possibly two at NLO, ...;
 - small number of particles in total.
- Parton shower, e.g. Pythia or HERWIG.
 - start with a hard process, additional radiation produced stochastically;
 - any number of particles in total/per jet;
 - effects of soft and collinear particles well-modelled (resummed) but large angle/hard radiation poorly described.

PRECISION VS. JETS

- To describe W+jets data, we need to work in both directions.
- Progress on multiple fronts: primarily more NLO and techniques for improving parton showers.

MULTIJETS

PRECISION VS. JETS

- To describe W+jets data, we need to work in both directions.
- Progress on multiple fronts: primarily more NLO and techniques for improving parton showers.

Matching: use PS shower where it works and LO matrix elements where approximations break down.

technical cut dependence

CKKW (Catani, Kuhn, Krauss, Webber) MLM (Mangano) SCET (Schwartz) GenEvA (Bauer, Tackmann, Thaler)

MULTIJETS

PRECISION VS. JETS

- To describe W+jets data, we need to work in both directions.
- Progress on multiple fronts: primarily more NLO and techniques for improving parton showers.

MULTIJETS

Matching: use PS shower where it works and LO matrix elements where approximations break down.

 NLO PS: shower uses NLO MEs, including one real emission, e.g. MC@NLO. Must avoid double counting.
 S.Frixione, B.Webber, hep-ph/0305252

TECHNICAL CUT

- SHERPA implements the CKKW prescription for matching, with a jet resolution cut Q_{cut} determining the use of ME or PS.
- In principle, algorithm independent of choice (at this order), but in practise should be guided by common sense/data.

F. Krauss et al., hep-ph/0503280

Clearly, choosing the cut too hard exposes the inadequacy of the PS that we were trying to avoid. Similar for other methods.

MATCHING COMPARISON

- Much work has been done to compare different parton shower matching procedures for W+jet predictions.
- Differences in rates and distributions, but ...
 - variations can be accounted for by usual change of scales
 - could tune to Tevatron data and extrapolate to LHC

leading jet pT in W+jet events at the Tevatron

> broadly consistent

J. Alwall et al. arXiv:0706.2569

HIGHER ORDERS

Inclusive production of W and Z known to NNLO. C. Anastasiou et al. hep-ph/0312266

- accuracy of a few percent on total rate and distributions.
- W/Z+1 jet known at NLO for a long time, where "jet" means a massless quark or gluon.

W. Giele, N. Glover, D. Kosower, hep-ph/9302225

■ related process $e^+e^- \rightarrow 3$ jets now known at NNLO

A. Gehrmannde Ridder et al, arXiv:0711.4711

non-trivial work to do crossing to hadron collider

• W/Z + 2 jets known at NLO for some time

JC, K. Ellis, hep-ph/0202176

barring immense breakthrough, NNLO very unlikely

The NLO parton shower MC@NLO matches to inclusive W/Z processes. One extra jet not infeasible, but for now must choose either higher orders or parton shower.

CDF COMPARISON

T. Aaltonen et al. (CDF), arXiv:0711.4044

Open questions:

- NLO description excels, but agreement "too good".
- can we extend NLO to higher multiplicities?
- if not, how do we best estimate rates?
- how do the approaches fare for distributions?

LHC PROSPECTS

- At the Tevatron, rate for vector boson pairs is just enough to be observable.
- At the LHC there will be plenty of WW+ jets.

Need similar studies there, e.g. for probing Higgs sector.
 B. Mellado, W. Quayle, S. L. Wu, arXiv:0708.2507

gluon fusion \rightarrow 0 jets (veto); radiation \rightarrow 1 or more jets

WBF → two forward jets, one of which may be lost

systematic study of WW+jet backgrounds a priority

ME+PS: extra W means harder to crunch, but much the same.

Fixed order: WW known at NLO for a long time, WW+jet recently calculated.
S. Dittmaier, S. Kallweit, P. Uwer, arXiv:0710.1577
JC, K. Ellis, G. Zanderighi, arXiv:0710.1832

T. Binoth et al., arXiv:0803.0494

HEAVY FLAVORS

Heavy quarks are different: the mass regulates the collinear pole in the matrix elements so that e.g. $p_T(Q) \rightarrow 0$ limit is safe.

- massless quark
- predictions diverge as $p_T(Q) \rightarrow 0$
- must impose min. pT and jet separation
- massive quark
- divergence regulated, behaves as log(m²)
- no cuts necessary, can calculate inclusively
- Sometimes we are not interested in the low pT behaviour and want to treat the heavy quark as just another ordinary jet.

The effect of the mass is $O(m^2/Q^2)$ but large around threshold.

• Neglect
$$\rightarrow$$
 easier theory.

F. Febres Cordero et al., hep-ph/0606102

HQ APPROACHES

- For very high c.o.m. energies we are sensitive to the heavy quark content of the proton sea
- We are used to this description already for charm, but not as familiar with the bottom quark - more important at LHC.

- The PDF represents the production of a heavy quark from a gluon splitting, together with an (unobserved) antiquark.
 - could have included splitting explicitly and integrated out.
- The two approaches are of course exactly equivalent in the full theory; at a given order of PT, it might not be the case.
- Important to understand what differences exist and if/when one approach is superior. Parton shower typically uses FFS.

PROS AND CONS

M. Mangano, LBNL workshop, March 2008

PROTOTYPE PROCESS

- W+c: simplest possible case. Analyzed by Berger et al. (1989).
- NLO predictions known in both schemes.

W. Giele, S. Keller, E. Laenen, hep-ph/9511449

large difference at LO reduced at NLO

agreement at 20% level for small scale choice, which is well-motivated theoretically

good stability wrt scale variation for $2 \rightarrow 1$

Real phenomenology: differences of this size bring into question claims of few % accuracy in inclusive W cross-section.

DISTRIBUTIONS

More important: how do distributions compare with parton shower approaches used in many analyses?

- Some features of NLO reflected in Pythia prediction - not all bad?
- Lots of room for improvement:
 - further comparison of approaches.
 - more use of PS/ME merging.

COMPARISON WITH DATA

CDF result (non-inclusive): $p_T(c) > 20$ GeV, $|\eta(c)| < 1.5$.

	σxBR(W→ev) [pb]				
CDF T. Aaltonen et al., arXiv:0711.2901	9.8 ± 3.2				
$LO - Q^2 = m_w^2 + p_T^2$	6.8				
$LO - Q^2 = p_T^2$	8.8				
NLO – $Q^2 = (40 \text{ GeV})^2$	11.0 (+1.4,-3.0)				
registion or and and and the litely for the					

variation over wide scale range and multiple PDF sets \rightarrow large residual uncertainty Good agreement

W+BOTTOM

- No direct analogue with W+charm (CKM). Require hard b.
- Two mechanisms for producing W+b+(another unseen jet):

no b in initial state
inclusive of second b
→ need massive ME

- use bottom PDF
- inclusive of light quark (protected by W mass)
- Goal: combine both calculations at NLO for best prediction.
 Cannot do all in FFS since Wbbj not known at NLO.
 F. Febres Cordero et al. + F. Maltoni et al. (ongoing)
- The calculations have some overlap at NLO, so some care must be taken not to double count.

PRELIMINARY RESULTS

Rates for W	V+b+X [pb]	$q \longrightarrow b$ \bar{b} $\bar{q} \longrightarrow W$	b b q q' ~ q' W	SUM
Tevatron p _T >15 GeV η <2	LO	10.22	1.81	12.03
	NLO	15.94	2.78	18.72
		K-factor ≈ 1.5 at both		
LHC pT>25 GeV η <2.5	LO	97.9	173.0	270.9
	NLO	136.8	283.8	420.6

- Preliminary results from CDF ($p_T>20$ GeV, $|\eta|<2$) indicate data is above LO theory by factor of 3-4, but distns are OK.
 - NLO result might help somewhat but still a puzzle.

Z+HEAVY QUARK

Similar to W+b, except that there is also a gg $O(\alpha s^2)$ process.

LO comparison: Tevatron, $p_T(b) > 20$ GeV, $|\eta(b)| < 2.5$

Large discrepancy, but less for smaller scales. Rigorous study at NLO (like for W+c) necessary for real understanding.

DISCREPANCY

- The discrepancy is in marked contrast to photon+b process.
- Here photon pT naturally sets the scale.
- Works well already at LO; how about NLO? Partly known. E. Berger, L. Gordon, hep-ph/9512343

Also, discrepancy is masked by the large qq contribution
 (>= gg) when comparing with data on the integrated rate.

$$\begin{bmatrix} \frac{\sigma(Z+b-\text{jet})}{\sigma(Z+\text{jet})} \end{bmatrix}_{\text{exp}} = 0.021 \pm 0.004 \quad \text{V. Abazov et al. (D0),} \\ \frac{\sigma(Z+b-\text{jet})}{\sigma(Z+\text{jet})} \end{bmatrix}_{\text{th.}} = \begin{cases} 0.018 \pm 0.004 & \text{NLO VFS} \\ 0.015 - 0.023 & \text{LO FFS} \end{cases}$$
How do we interpret this apparent agreement?

Comparison of pT distribution below ~40 GeV essential to understanding theory and learning lessons for LHC.

STATE OF PLAY

Active field in preparation for upcoming tests at the LHC.

	1 C-TAG	1 B-TAG	2 C-TAG	2 B-TAG
W+1 JET	FF NLO (GKL 96, CET 05)	FF+HVQ NLO (FRW+CEMW 08)	N/A	N/A
W+2 JETS	LO ONLY	HVQ NLO (CEMW 07)	FF NLO (FRW 07)	
Z+1 JET	FF NLO (FRW 08) HVQ NLO (CEMW 03)		N/A	N/A
z+2 jets	HVQ NLO (CEMW 06)		FF NLO (FRW 08)	

- 2 jets with one tag \rightarrow HVQ only
 - Beyond 2 jets uncalculated at NLO.
- GKL = Giele, Keller, Laenen CET = JC, Ellis, Tramontano
- FRW = Febres Cordero, Reina, Wackeroth
- CEMW = JC, Ellis, Maltoni, Willenbrock

SUMMARY

In absence of heavy quarks, situation is quite encouraging.

- good agreement between data and theory;
- PS/ME matching mature, just need more to tune with;
- NLO works well (up to 2 jets), new automated multi-leg approaches may get us further in the near future.
- For heavy quarks, picture is not so clear.
 - in some cases, no agreement at all elsewhere, only patchy;
 - latest Tevatron data is confronting the two theoretical approaches → real chance to understand tools;
 - systematic evaluation of theory underway.