HCP 2008

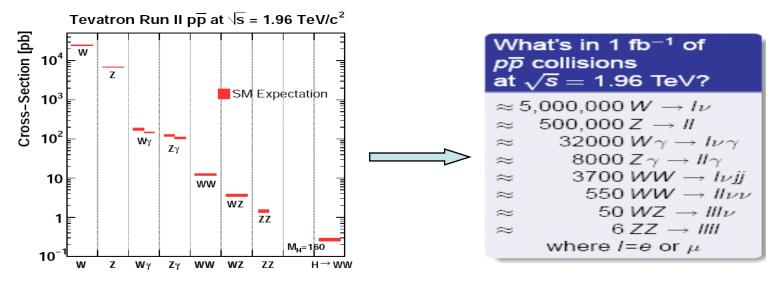
May 27 - 31, 2008

Ia Iashvili

For the CDF and DØ Collaborations

Outline

Introduction


- Wγ production
 - Cross section measurement
 - Radiation Amplitude Zero
 - Triple Gauge Boson Couplings
- WW production
 - **Cross section measurement**
 - **Triple Gauge Boson Couplings**
- WZ production
 - **Cross section measurement**
 - **Triple Gauge Boson Couplings**
- Semi-hadronic WZ/WW production decays
- Zγ production
 - Cross section measurement
 - **Triple Gauge Boson Couplings**
- ZZ production
 - First evidence
 - **Cross section measurement**
 - Triple Gauge Boson couplings
- Summary

- Tevatron diboson program: measure production cross sections, study kinematics and probe gauge boson self-interactions.
- Diboson production is one of the least tested areas of the SM.
- Triple gauge vertices are difficult to access with other than diboson production processes. They are expected to be sensitive to physics beyond the SM.
- Tevatron complementary to LEP: explores higher energies and different combinations of couplings.
- Even in the SM, diboson production is an important process to understand: it shares many characteristics and is a background to Higgs and SUSY.

Introduction

• Excursions from the SM can be described via effective Lagrangian:

$$L_{WWV} / g_{WWV} = g_V^1 (W_{\mu\nu}^+ W^\mu V^\nu - W_\mu^+ V_\nu W^{\mu\nu})$$

+ $\kappa_V W_\mu^+ W_\nu V^{\mu\nu} + \frac{\lambda_V}{M_W^2} W_{\lambda\mu}^+ W_\nu^\mu V^{\nu\lambda}$
where $V = Z, \gamma$

In SM:
$$g_V^1 = \kappa_V = 1$$
, $\lambda_V = 0$

- Anomalous Triple Gauge Copuling's (TGC) increase production cross sections, particularly at high values of the boson E_T (W/Z/γ).
- Unitarity violation avoided by introducing a form-factor scale A, modifying the anomalous coupling at high energy:

$$\lambda(\hat{s}) = \frac{\lambda}{(1+\hat{s}/\Lambda^2)^n}$$

$$q \overline{q}' \rightarrow W^{(*)} \rightarrow W \gamma : WW \gamma \text{ only}$$

$$q \overline{q}' \rightarrow W^{(*)} \rightarrow WZ : WWZ \text{ only}$$

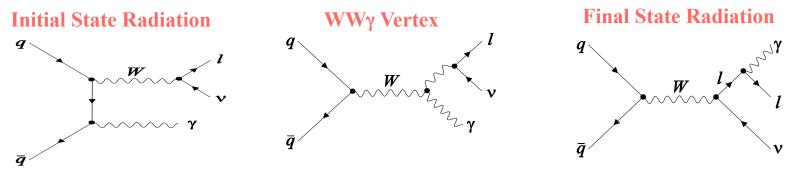
$$q \overline{q} \rightarrow W^{(*)} \rightarrow WZ : WWZ \text{ only}$$

$$q \overline{q} \rightarrow Z/\gamma^{(*)} \rightarrow WW : WW\gamma, WWZ$$

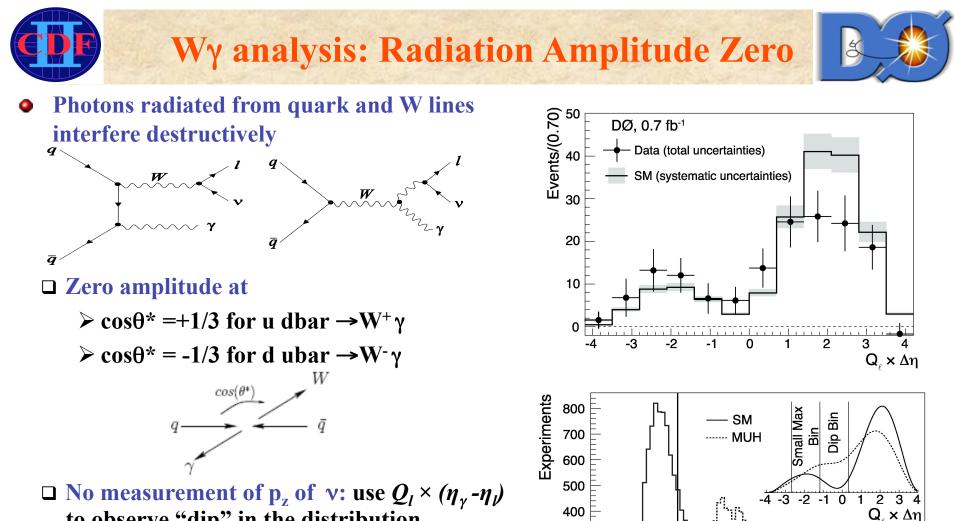
$$q \overline{q} \rightarrow Z/\gamma^{(*)} \rightarrow Z\gamma : ZZ\gamma, Z\gamma\gamma$$

$$q \overline{q} \rightarrow Z/\gamma^{(*)} \rightarrow ZZ : ZZ\gamma, ZZZ$$
Absent in SM

• Two types of effective Lagrangians with: on-shell $Z\gamma$ on-shell ZZ $(Z\gamma Z^*, Z\gamma\gamma^*)$ $(ZZZ^*, ZZ\gamma^*)$ h_{10}^V, h_{20}^V (CP violating) f_{40}^V h_{30}^V, h_{40}^V (CP conserving) f_{50}^V


SM predicts all to be 0

Wy analysis at DØ


Three main diagrams for Wy production at the Tevatron:

- Deviation from the SM prediction would be a sign of new physics
 - \blacktriangleright Particularly at high p_T region of photon
 - \succ Sensitive to WW γ coupling
 - > Interference of photons radiated from quark and W lines yield a peculiar experimental feature
- Basic $W\gamma \rightarrow l \upsilon \gamma$ event selection $(l = e, \mu)$:
 - \succ High p_T electron or muon and high E_T^{miss}
 - > $E_T^{\gamma} > 9$ GeV either in Central ($|\eta| < 1.1$) or Endacp (1.5 < $|\eta| < 2.5$) calorimeter
 - > dR(l, γ) > 0.7
 - > $dR(l,\gamma) > 0.7$ > $M_T(l\nu\gamma) > 110 (120) \text{ GeV}$

To reduce FSR contribution

- Main background processes: W+jets, "*l*eX"– events with *l* and e faking γ, $W(\rightarrow \tau \upsilon)\gamma, Z\gamma.$

300

200 100

0

-0.5

0

0.5

1

1.5

2

2.5

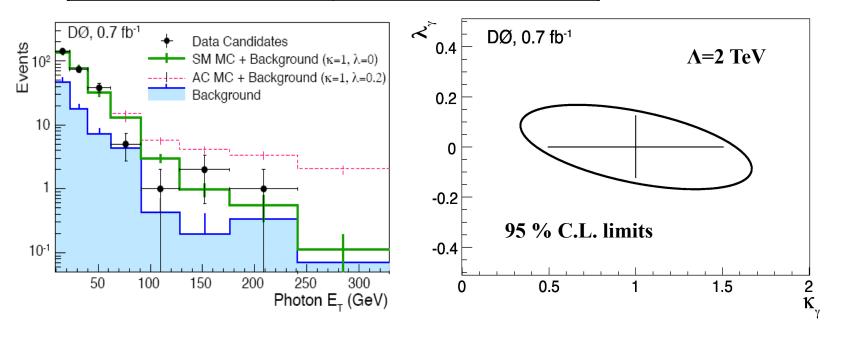
DØ, 0.7 fb⁻¹

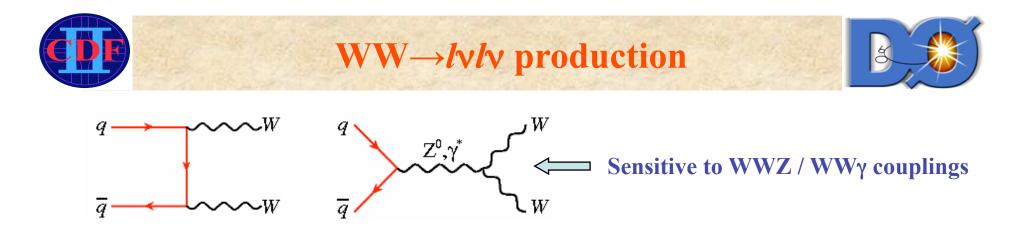
3.5

R value

6

- to observe "dip" in the distribution
- □ Non-SM coupling may fill the "dip"
- DØ: No dip hypothesis ruled out at 2.6 σ constitutes first indication level for radiation-amplitude zero in Wy.




7

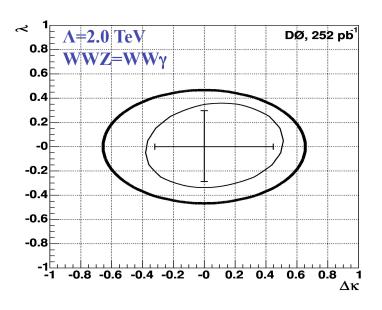
- Non-SM WWy TGC enhances production cross section
 - > Particularly at high p_T region of photon
 - > Probes Δk_{γ} and λ_{γ} parameters (both zero in SM)

DØ (0.7 fb-1), Λ=2TeV	LEP, $\hat{s} \approx 2M_W$
$-0.49 < \Delta \kappa_{\gamma} < 0.51$	$-0.105 < \Delta \kappa_{\gamma} < 0.069$
$-0.12 < \lambda_{\gamma} < 0.13$	$-0.059 < \lambda_{\gamma} < 0.026$

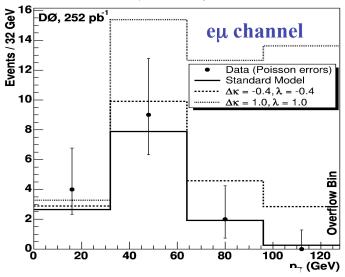
arXiv:0803.0030v1, Accepted by PRL

- **Ο** Dilepton channel provides cleanest signature: ee, μμ or eμ accompanied by missing E_T
- Main background processes: W+j/γ, dijet, Drell-Yan, top pairs, WZ, ZZ
- Theory prediction for production cross section is 12.0-13.5 pb (J. Ohnemus, PRD 50, 1931 (1994); J.M. Campbell and R.K. Ellis, PRD 60, 113006 (1999)) accessible at Tevatron Run II already with a couple of 100 pb⁻¹.
- Cross section measurements
 - DØ, $L \approx 240 \text{ pb}^{-1}$, PRL 94, 151801 (2005) $\sigma = 13.8^{+4.3}_{-3.8} (\text{stat})^{+1.2}_{-0.9} (\text{sys}) \pm 0.9 (\text{lumi}) \text{ pb}$
 - CDF, *L* ≈ 825 pb⁻¹, preliminary

 $\sigma = 13.6 \pm 2.3(\text{stat}) \pm 1.6(\text{sys}) \pm 1.2(\text{lumi}) \text{ pb}$

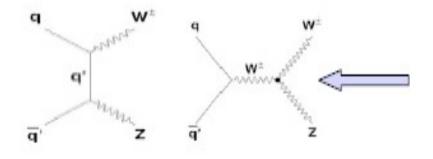

Previous results with *L* = 200 pb⁻¹ in *PRL 94, 211801 (2005)*

WW →*l*v*l*v production: probing WWZ and WWγ couplings

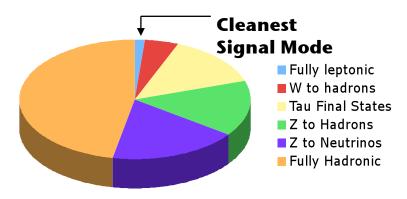


- Use p_T spectra of leptons to probe WWZ and WWγ couplings:
 - > Non-SM TGC enhances cross-section at high p_T.
- Test various assumptions for WWZ and WWγ coupling relations:
 - **WWZ coupling = WWγ coupling**
 - HISZ parametrization: imposes SU(2)×U(1) symmetry on the coupling parameters
 - **>** Fix WWZ (WWγ) coupling to the SM value

Coupling		95% C.L. Limits	Λ (TeV)
$WW\gamma=WWZ$	λ	-0.31, 0.33	1.5
	$\Delta \kappa$	-0.36, 0.47	1.5
$WW\gamma = WWZ$	λ	-0.29, 0.30	2.0
	$\Delta \kappa$	-0.32, 0.45	2.0
HISZ	λ	-0.34, 0.35	1.5
	$\Delta \kappa_{\gamma}$	-0.57, 0.75	1.5
SM $WW\gamma$	λ_Z	-0.39, 0.39	2.0
	$\Delta \kappa_Z$	-0.45, 0.55	2.0
SMWWZ	λ_{γ}	-0.97, 1.04	1.0
	$\Delta \kappa_{\gamma}$	-1.05, 1.29	1.0


PRD 74 (057101), 2006

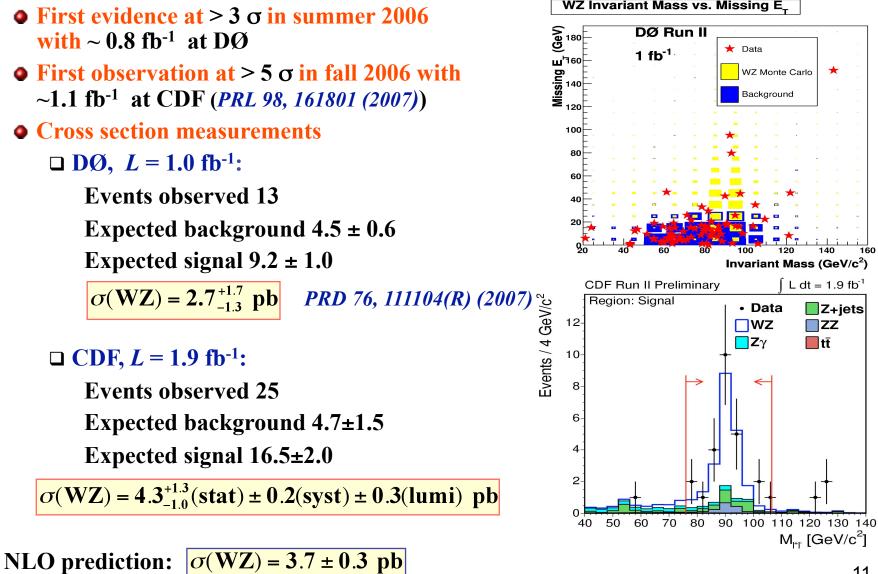
$WZ \rightarrow lllv$ production



- Sensitive to WWZ coupling only (WW is sensitive to both WWZ and WWγ).
- WZ production is unavailable at e⁺e⁻ colliders.

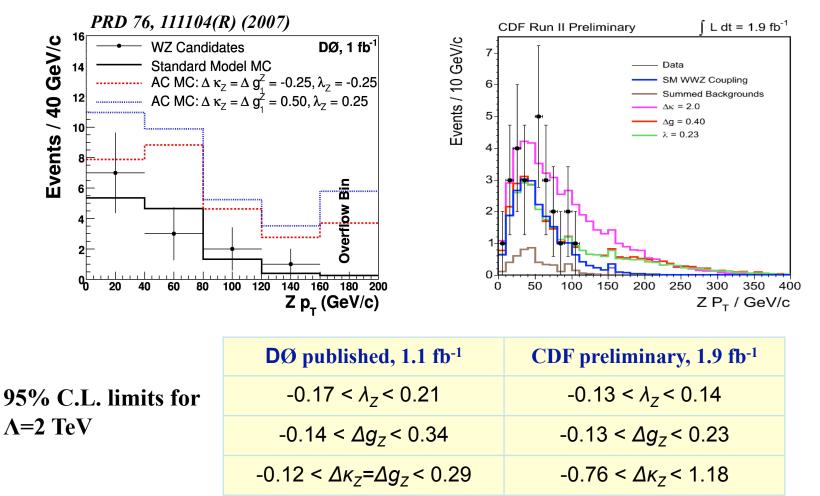
- Search for WZ production in 3 leptons
 (eee,eeμ, eμμ, μμμ) + missing E_T
- Distinct, but rare signature:
 - $\succ \sigma(\text{ppbar}\rightarrow\text{WZ}) = 3.7 \pm 0.1 \text{ pb}$
 - ➢ Branching fraction ~1.5%

• Background processes: Z+jet(s), ZZ, Zγ, ttbar production



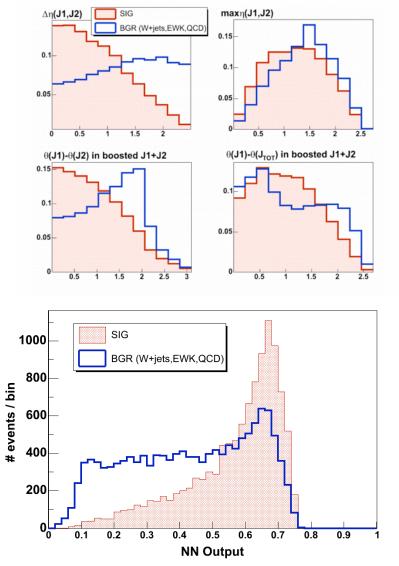
WZ Production Branching Ratios

$WZ \rightarrow lllv$ production


WZ Invariant Mass vs. Missing E

WZ → *lll*∨ production: probing WWZ coupling

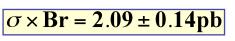
• Non-SM WWZ coupling enhances cross section at high values of Z p_T



WW/WZ→lvjj at CDF

- Combined analysis of WW→*l*vjj and WZ→*l*vjj channels
- Final state similar to WH→lvbb
- Experimentally challenging:
 - □ 5-10 × more data than in leptonic channels
 - 1000 × more background: W+jets, Z+jets, QCD multijet, ttbar.
- Select events with
 - **Hih p**_T electron or muon
 - **High missing E**_T
 - $\Box \text{ High } M_T(l, E_T^{miss})$
 - $\Box \geq 2$ jets
- S/B < 1% after selection
 - □ Apply NN to suppress background
 - □ For NN input only use variables noncorrelated with M(jj)
 - □ Look for "bump" in M(jj) distribution

- Signal is extracted by fitting M(jj) distribution
 - Signal shape from MC
 - Background shape from MC+data

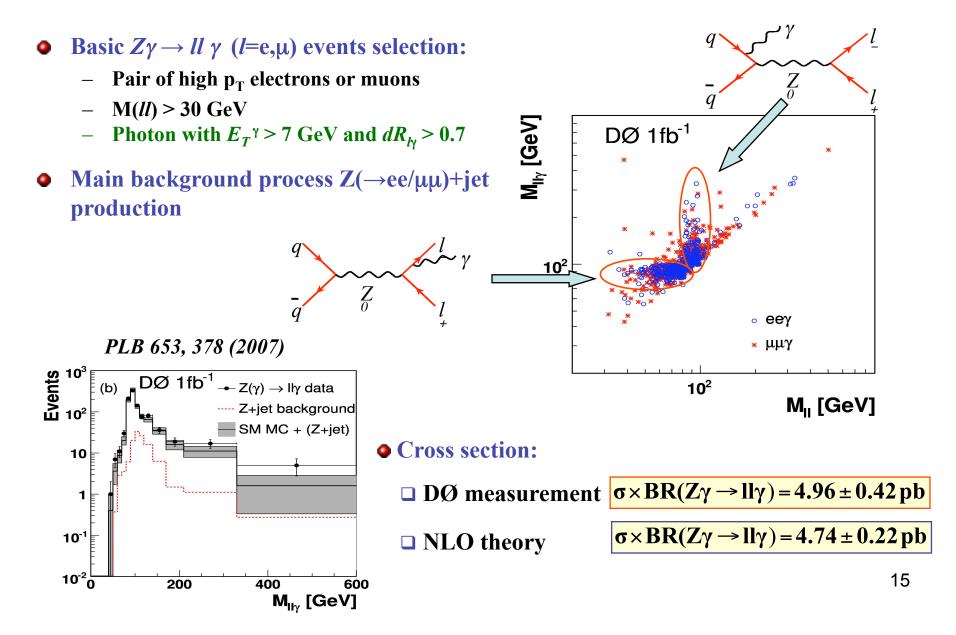

 $Nsignal = 410 \pm 212(stat) \pm 107(syst)$


Measured cross section $\sigma \times Br = 1.47 \pm 0.77(stat) \pm 0.38(sys)pb$

95% C.L. upper limit

 $\sigma \times Br < 2.88 \text{ pb}$

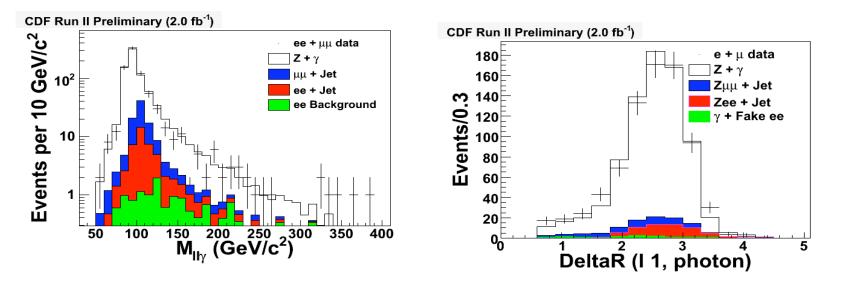
Theory calculation



Z γ analysis

Zγ analysis

- CDF: separate measurements for ISR and FSR processes:
 - > ISR enriched sample by applying M $(l l \gamma) > 100$ GeV

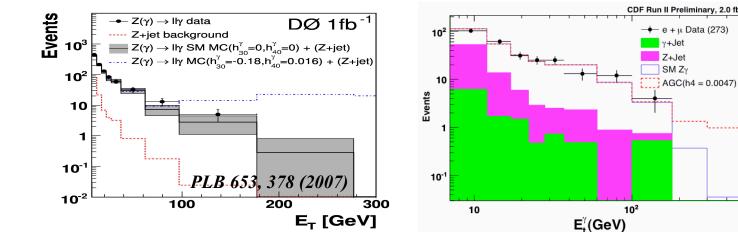

□ Measured $\sigma \times BR(Z\gamma \rightarrow ll\gamma) = 1.2 \pm 0.1(stat.) \pm 0.2(syst.) \pm 0.1(lumi)$ pb

□ NLO theory $\sigma \times BR(Z\gamma \rightarrow ll\gamma) = 1.2 \pm 0.1 \ pb$

- **FSR** enriched applying M $(l l \gamma) < 100$ GeV
 - Measured

 $\sigma \times BR(Z\gamma \rightarrow ll\gamma) = 3.4 \pm 0.2(stat.) \pm 0.2(syst.) \pm 0.2(lumi) pb$

□ NLO theory $\sigma \times BR(Z\gamma \rightarrow II\gamma) = 3.3 \pm 0.3$ pb



Z γ analysis: probing ZγZ and Zγγ couplings

- No ZyZ and Zyy vertices in SM
- Non-SM ZγZ and Zγγ TGCs enhance production cross section
 - > Particularly at high p_T region of photon
 - > Probes $h_{3,4}^{Z}$ and $h_{3,4}^{\gamma}$ parameters (both zero in SM)

		DØ published ~1 fb ⁻¹	CDF preliminary 1.1fb ⁻¹ e, 2.0 fb ⁻¹ μ	LEP-II 2003
95% C.L. limits for Λ=2 TeV	$egin{array}{c} \mathbf{h}_{3}^{\gamma} \ \mathbf{h}_{4}^{\gamma} \end{array}$	[-0.085, 0.084] [-0.0053, 0.0054]	[-0.084, 0.084] [-0.0047, 0.0047]	[-0.049, -0.008] [-0.002, 0.034]
	$\begin{array}{c} h_3^Z \\ h_4^Z \end{array}$	[-0.083, 0.082] [-0.0053, 0.0054]	[-0.083, 0.083] [-0.0047, 0.0047]	[-0.20, 0.07] [-0.05, 0.12]

ZZ production

• Very small production cross section:

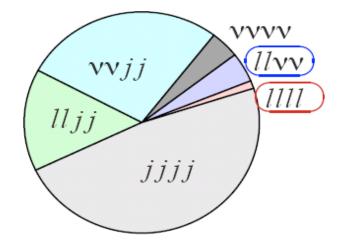
 $\sigma(p\overline{p} \rightarrow ZZ) = 1.4 - 1.6 \ pb$

• Two main decay modes studied at the Tevatron

 \Box ZZ \rightarrow 4*l*, with *l=e,µ*

• Very clean: low background contamination from Z/γ +jets and ttbar processes.

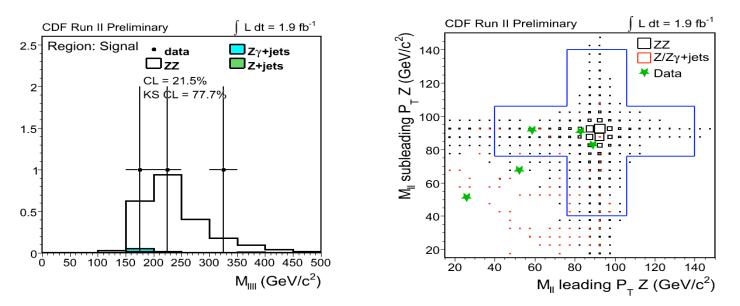

• Small BR = $(2 \times 0.033)^2 = 0.0044$


\Box ZZ \rightarrow *llvv*, with *l* = *e*, μ

Several significant background processes: WW, Z+jets, WZ, Drell-Yan productions
6 times larger BR =2 × 0.2 × (2×0.033)=0.026

• Use multivariate approach to discriminate between signal and background:

- > Matrix Element method by CDF
- Likelihood method by DØ



● Z→4l channel:

- □ Split 4e, 4mu and 2e2mu channels into 7 exclusive categories depending whether a lepton has a track and/or is identified explicitly.
- □ One pair of leptons with M(ll) in [76 GeV 106 GeV]; the other pair with M(ll) in [40 GeV -140 GeV].

1 fb ⁻¹	Candidates without a	Candidates with a
Category	a trackless electron	a trackless electron
ZZ	$1.990 \pm 0.013 \pm 0.210$	$0.278 \pm 0.005 \pm 0.029$
Z+jets/Z γ +jets	$0.014^{+0.010}_{-0.007}\pm 0.003$	$0.082^{+0.089}_{-0.060}\pm 0.016$
Total	$2.004^{+0.016}_{-0.015}\pm 0.210$	$0.360^{+0.089}_{-0.060}\pm 0.033$
Observed	2	1

ZZ→*ll*vv at CDF

• Select events with $ee/\mu\mu$ + large missing E_T . Veto on central jets to suppress ttbar contribution

Observe 276 events in the pre-selected sample
 expect only 14 ± 2 signal events

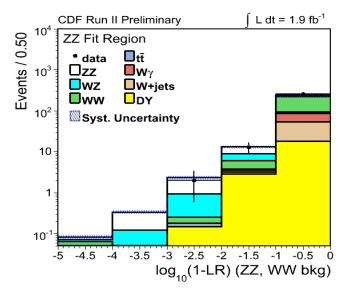
• Use the full kinematic information

 $P(\vec{x}_{obs}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{th}(\vec{y})}{d\vec{y}} \epsilon(\vec{y}) G(\vec{x}_{obs}, \vec{y}) d\vec{y}$

What we measure

 \vec{x}_{obs} observed "leptons" and $\vec{E_T}$ Theory at leading order

- $\sigma_{th}(\vec{y})$ leading order calculation of the cross-section \vec{y} true lepton four-vectors
 - true lepton four-vectors (including neutrinos)


Detector Effects

$$\epsilon(\vec{y})$$

total event efficiency × acceptance

 $G(\vec{x}_{obs}, \vec{y})$ resolution effects

$$LR \equiv \frac{P_{ZZ}}{P_{ZZ} + P_{WW}}$$

• Combine ZZ \rightarrow 4l and ZZ \rightarrow 2l2 ν channels:

50% chance to observe 5σ effect

Observed Results				
P-Value	0.12	1.1×10^{-5}	5.1×10^{-6}	
Significance	$1.2~\sigma$	4.2σ	4.4 σ	

• Cross-section measurement

 $\sigma(ZZ) = 1.4^{+0.7}_{-0.6}(stat + sys) pb$

 $\sigma(ZZ)=1.4$ pb predicted by NLO

arXiv:0801.4806v1, submitted to PRL

$ZZ \rightarrow 4l$ at DØ

- Three channels considered: eeee,eeµµ and µµµµ
 - \Box M (*ll*) > 30 GeV, includes ZZ/Z γ * interference
 - □ Background from
 - Z+jets where two jets are mis-identified as leptons
 - $Z\gamma$ +jets where the γ and a jet are misidentified as leptons
 - ttbar \rightarrow lvb + lvbbar with b/bbar decaying semileptonically

1 fb ⁻¹	eeee	ee $\mu\mu$	$\mu\mu\mu\mu$	Total
ZZ Sig	0.44±0.03	0.81±0.09	0.46 ± 0.05	1.71±0.15
Bkg	$0.080 {\pm} 0.021$	$0.013{\pm}0.004$	$0.033{\pm}0.006$	0.13±0.03
Observe	0	1	0	1

• 95% C.L. limit on cross section:

The NLO theory calculations:

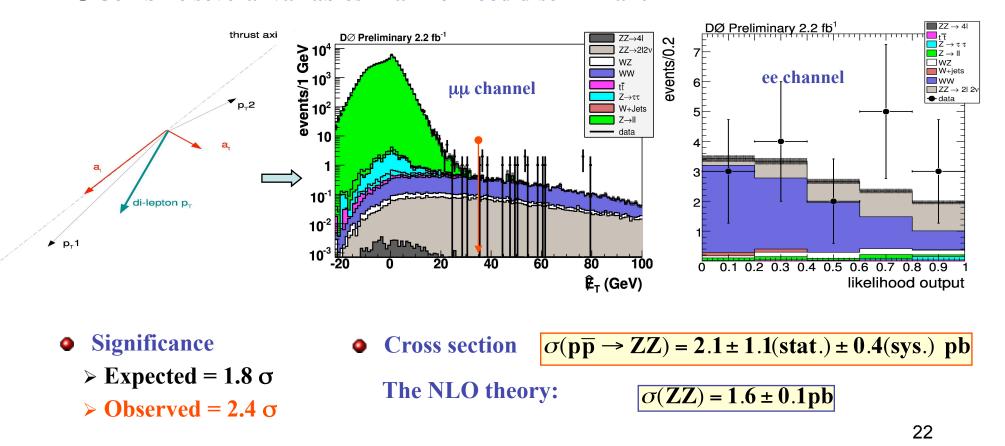
 $\sigma(\mathbf{ZZ}) = 1.6 \pm 0.3 \mathrm{pb}$

 $\sigma(ZZ) < 4.4 \text{pb}$

95% C.L. limits for Λ=1.2 TeV

- Anomalous Couplings:
 - Limit region to M(ll) > 50 (70) GeV for ee (µµ)
 - Use event yields (all zero) to limit anomalous couplings

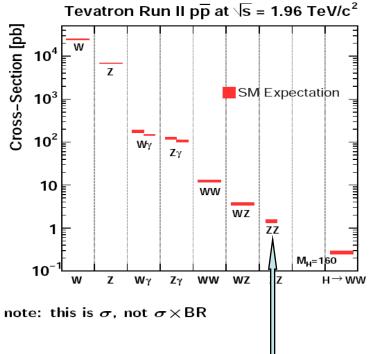
Phys. Rev. Lett. 100, 131801 (2008)


for A=1.2 TeV

$$-0.28 < f_{40}^Z < 0.28$$

 $-0.31 < f_{50}^Z < 0.29$
 $-0.26 < f_{40}^\gamma < 0.26$
 $-0.30 < f_{50}^\gamma < 0.28$

- Select ee/ $\mu\mu$ events with M(*ll*) consistent with M_Z. Veto central jets to suppress ttbar background.
- Find a variable sensitive to mis-measurements of the lepton p_T and the hadronic recoil \Rightarrow cause of missing E_T in $Z(\rightarrow ee/\mu\mu)$ background events.
- Combine several variables in a likelihood discriminant


Summary

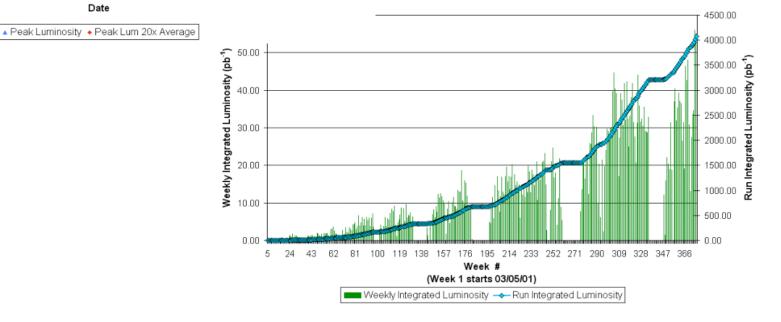
- Tevatron experiments are exploring radically new territories:
 - Observation of di-boson processes not accessible previously
 - Testing various triple gauge boson couplings a with increasingly higher precisions
 - Probing peculiar features predicted by the Standard Model
 - □ So far ... Standard Model wins again

• Even more exciting times ahead

- □ Presented results based on 0.2 2 fb⁻¹
- Tevatron experiments have just celebrated delivery of 4 fb⁻¹ of data. More data to come.

Already here

Backup slides


Peak Luminosity

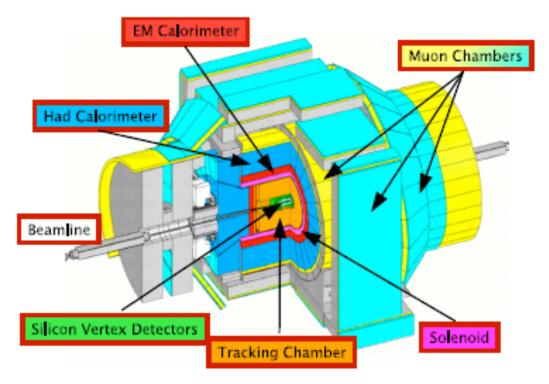
Collider Run II Peak Luminosity 3.20E+32 3.20E+32 2.80E+32 2.80E+32 2.40E+32 2.40E+32 Average 2.00E+32 2.00E+32 Deak Lum 20X b Peak Lum 20X b 1.60E+32 1.20E+32 8.00E+31 8.00E+31 4.00E+31 4.00E+31 0.00E+00 0.00E+00 01/01/02 -04/01/02 -07/01/02 -10/01/02 -01/01/03 -04/01/03 -07/01/03 -10/01/05 -10/01/06 - 01/01/06 - 01/01/07 - 01/01/07 - 01/01/07 - 01/01/07 - 01/01/08 - 01/08 - 01/01/08 - 01/01/08 - 01/01/08 - 01/01/08 - 01/01/08 - 00/08 -01/01/04 -07/01/04 10/01/04 -01/01/05 04/01/05 -07/01/05 01/01/06 04/01/06 -07/01/06 04/01/01 07/01/01 10/01/01 10/01/03

Date

Tevatron

Collider Run II Integrated Luminosity

DØ Detector


- 2T Solenoid • Silicon detector and scintillating fiber Fiber Tracker tracker in 2.0 T solenoidal field -Coverage up to $|\eta| = 2.5$ Silicon µ-strip Tracker Preshowers Forward Muon • Liquid Argon/Uranium calorimeters Tracking+Trigger -Central and two forward JORTH calorimeters -Stable, uniform response, radiation hard -Hermetic with coverage up to $\eta = 4.2$ Muon System -Coverage up to $|\eta| = 2.0$ - Three layers of scintillators and Beamline drift tubes Shielding -Central and Forward -A layer - inside 1.8T toroid magnet 20 m -Shielding reduces backgrounds by -10 Central Muon (m) 50-100 x Scintillators 100764
- Three Level Trigger

 $-L1/L2/L3 \sim 1800/1000/50 \ Hz$

CDF Detector

- Segmented sampling calorimeters
- Shower maximum detectors
 - Shower shape measurement
 - Central: gas-based
 - Forward: scintillator

- Muon Chambers
 - o CMU & CMP (|η| < 0.6)</p>
 - CMX (0.6 < |η| < 1.0)</p>