Experimental Studies of W/Z + Jets and W/Z + Heavy Flavor Jets at the Tevatron

Christopher Neu

on behalf of the $C D F$ and $D \varnothing$ Collaborations

HCP2008
19th Hadron Collider Physics Symposium 2008

27 May 2008
Galena, IL

Outline:

- Importance of $W / Z+$ jets
- Recent Tevatron progress
- Summary and future

Importance of W/Z + Jet Physics

Why study W/Z +jet production?

- Important tests of Quantum Chromodynamics (QCD)
- Recent LO and NLO simulations need experimental verification
- Signature shared with top production, Higgs, other searches at Tevatron, LHC

Result (1/fb)	D \varnothing	CDF
W+jets	--	0.320
Z+jets	0.950	1.700
W+b-jets	0.382	1.900
Z+b-jets	0.152	2.000
W+c-jets	1.000	1.800
Z+c-jets	--	--

$V=W$ or Z

Common features:

- Charged particle tracking in magnetic field
- Electromagnetic and hadronic calorimetry
- Muon detection
- Luminosity monitoring
- Three level event trigger
$\phi=$ azimuthal angle

$$
\begin{aligned}
& \eta=-\ln \left(\tan \frac{\theta}{2}\right) \\
& \Delta R=\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}
\end{aligned}
$$

W + Inclusive Jets

- W selection: seek $W \rightarrow e v$
- e: $\mathrm{E}_{\mathrm{T}}>20 \mathrm{GeV},|\eta|<1.1$
- v. missing transverse energy MET> 30 GeV
- $\mathrm{M}_{\mathrm{T}}(W)>20 \mathrm{GeV} / \mathrm{c}^{2}$
- Jet definition: Cone algorithm, $\mathrm{R}=0.4$
- Corrected $\mathrm{E}_{\mathrm{T}}>20 \mathrm{GeV},|\eta|<2.0$

- LO calculation procedure: Generate $\overline{p \bar{p}} \rightarrow W+\mathrm{N}$ partons at tree lnuement? loop corrections, employ parton shower
- Ambiguities arise:
- Possibility for double counting if $\mathrm{N}_{\text {par }} \quad$ Work is ongoing.
- SMPR and MLM refer to algorithms fo

$Z / \gamma^{*}+$ Inclusive Jets

NLO prediction once again more accurate than LO!

- Validity of NLO predictions borne out in $\mathrm{Z} / \gamma^{*}+j e t s ?$
- Z / γ^{*} selection: seek $Z / \gamma^{*} \rightarrow e^{+} e^{-}$
- Two $\mathrm{E}_{\mathrm{T}}>25 \mathrm{GeV}$ electrons
$-66<\mathrm{M}_{\mathrm{ee}}<116 \mathrm{GeV} / \mathrm{c}^{2}$
- Jet definition:
- Corrected $\mathrm{p}_{\mathrm{T}}>30,|\mathrm{y}|<2.1$
- Cone algorithm , $\mathrm{R}=0.7$

$$
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)
$$

- Major backgrounds: S/B ~ 7/1
- QCD multijets
- W + jets
- ttbar, diboson
- $\mathrm{Z}+\gamma, \mathrm{Z} \rightarrow \tau \tau$

Z/r゙ + Inclusive Jets

- Differential cross section:
- NLO was good in W+jets, true here too?
NLO prediction
reliable - as in W+jets
- Analysis would benefit from increased statistics to further populate the Z+ 2 -jets sample
- NLO for Z+ ≥ 3-jets would be valuable as well.

Z / $\boldsymbol{\gamma}^{*}+$ Inclusive Jets

- $\mathrm{D} \varnothing \mathrm{Z} / \gamma^{*}(\rightarrow e e)+\mathrm{jets}$ analysis: $950 / \mathrm{pb}$
- Purpose here: compare Pythia ($\overline{p \bar{p}} \rightarrow W+1 \mathrm{p}+$ internal PS) and Sherpa ($p \bar{p} \rightarrow W+N p+$ internal PS + CKKW matching) event generators
- Test of different prediction techniques
- Some confidence in CKKW from CDF W+jets LO studies...true here as well?

Z/ $\gamma^{*}+$ Inclusive Jets

Sherpa + CKKW represents data better than Pythia

- P_{T} of jet 1,2,3
- $\mathrm{Z} \mathrm{p}_{\mathrm{T}}$ Jet multiplicity
- $\Delta \eta($ jet, jet $), \Delta \varphi(j e t, j e t)$

Not unexpected given the nature of Pythia's calculation.

Summary so far...

- W/Z+1,2 jet NLO predictions from MCFM look reliable
- NLO predictions not yet in hand for $W / Z+\geq 3$ jet
- Technique of calculating/generating $p p \rightarrow \mathbf{W}+\mathbf{N}+$ parton shower + matching scheme (ala ALPGEN, MadGraph, Sherpa) superior to Pythia+PS alone
- Differences among available tools still need to be understood

- W/Z + heavy flavor (b, c) jets also important
- background to top, Higgs, others
- W+c production has unique features

W + Single c Production

- Importance of $W^{ \pm}+$single c :
- Insight on PDF for s at rather large Q^{2}
- Insight on $\left|V_{c s}\right|$
- Part of W+jets bkgd to top, Higgs searches
- Event selection similar to $W+j e t s:$
- Here use $W \rightarrow e / \mu v$ for W selection
- Exploit $W^{ \pm}+$single c feature:
- charm hadron semileptonic daughter and W have opposite charge

Soft Muon Identification

Parameterization for "mistags":

- decays in flight
- hadronic punch-through

$$
\sigma_{W c} \times \mathrm{BR}(W \rightarrow \ell v)=\frac{N_{\mathrm{Tot}}^{\mathrm{OS}-\mathrm{SS}}-N_{\mathrm{Bkg}}^{\mathrm{OS}-\mathrm{SS}}}{A \cdot \mathcal{L}}
$$

- Major opposite-sign (OS) backgrounds:
- Drell Yan $\mu^{+} \mu^{-}$
- Fake W
- Wq
- Insensitive to W+bb, W+cc, (OS/SS random)

W + Single c Production

- Result: for $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{c}}>20,\left|\eta^{\mathrm{c}}\right|<1.5$

$$
\sigma \times B R=9.8 \pm 2.8 \text { (stat) }{ }^{+1.4}{ }_{-1.6}(\mathrm{syst}) \pm 0.6 \text { (lum) } \mathrm{pb}
$$

- Prediction: NLO from MCFM

$$
\sigma \times B R=11.0^{+1.4}{ }_{-3.0} \mathrm{pb}
$$

Good agreement!

Phys. Rev. Lett. 100, 091803 (2008)
CDF II Preliminary

CDF II Preliminary

$W+$ Single c Production

- Similar analysis completed at DØ: 1/fb
- Measures the ratio

$$
\frac{\sigma(W+\text { single }-c)}{\sigma(W+\text { jets })}
$$

which allows for cancellation of many systematic errors

- Result:

$$
\frac{\sigma(W+\text { single }-c)}{\sigma(W+\text { jets })}=0.071 \pm 0.017
$$

which can be compared to the LO prediction: 0.040 ± 0.003 (PDF)

Statistics limited measurement Systematics dominated by JES.

Vertex Tagging: b 's and Non- b 's

Tagging of real b jet:
long lifetime+ large boost = secondary vertex

$$
L_{2 d}>0
$$

Prompt tracks

Spurious tagging of light flavor jet:

"mistag"

Primary vertex

Tag efficiency for $\mathbf{u} / \mathrm{d} / \mathrm{s}$ jets

W + b-Jets

Goals:

- Measure W+b-jet production cross section
- Use measurement to improve background estimate for Higgs search
W and jets selection here similar to $W+$ inclusive jets analysis
- key difference: 1 or 2 jets only
- Here we need to identify jets that are likely $b^{\prime} s$ (via high purity tagging) and determine how many are really b^{\prime} s via vertex mass:
- invariant mass of charged particle tracks in secondary vertex

Vertex Mass Shapes

Generally,

$$
\begin{aligned}
& M_{B-h a d r o n s} \gtrsim M_{C-h a d r o n s} \gtrsim M_{L F-h a d r o n s} \\
& \quad \text { so }
\end{aligned}
$$

$$
M^{b}{ }_{v e r t} \gtrsim M^{c}{ }_{v e r t} \gtrsim M^{L F}{ }_{v e r t}
$$

$W+b$-Jets

Vertex Mass Fit

~1000 tagged jets among which ~ 700 are consistent with coming from a b quark

- Largest backgrounds: S/B ~ 3/1
- ttbar (40\% of total bkgd)
- single top (30\%)
- Fake W (15\%)
- WZ (5\%)
- Total contribution: ~180 tagged b jets
- Result: measure $\sigma_{\text {b-jets }}(W+b$-jets $) \times \operatorname{BR}(W \rightarrow I V)$
$\sigma \times B R=2.74 \pm 0.27$ (stat) ± 0.42 (syst) pb
- Prediction:
(default ALPGEN)
NB: This cross section is for b jets from $W+b$-jet production in events with a high p_{T} central lepton, high p_{T} neutrino and 1 or 2 total jets.

Publication in preparation.

$W+b$-Jets

Vertex Mass Fit

~1000 tagged jets among which ~ 700 are consistent with coming from a b quark

- Largest backgrounds: S/B ~ 3/1
- ttbar (40\% of total bkgd)
- single top (30\%)
- Fake W (15\%)
- WZ (5\%)
- Total contribution: ~180 tagged b jets
- Result: measure $\sigma_{\text {b-jets }}(W+b$-jets $) \times \operatorname{BR}(W \rightarrow I \nu)$ $\sigma \times B R=2.74 \pm 0.27$ (stat) ± 0.42 (syst) pb
- Prediction:

$$
\sigma \times B R=0.78 \mathrm{pb}
$$

Other predictions? Work is ongoing. (default ALPGEN)

NB: This cross section is for b jets from $W+b$-jet production in events with a high p_{T} central lepton, high p_{T} neutrino and 1 or 2 total jets.

Publication in preparation.

Z + b-Jets

Z+ b jet. CDF RUN II Preliminary

- Similar CDF analysis for Z+b-jets: 2/fb
- Utilize $Z \rightarrow e e$ and $\mu \mu$
- Similar jet definition
- Corrected $\mathrm{E}_{\mathrm{T}}>20 \mathrm{GeV},|\eta|<1.5$
- Cone algorithm with $\mathrm{R}=0.7$
- Secondary vertex tags

Z+ b jet. CDF RUN II Preliminary

- Differential cross sections with comparisons to LO, NLO predictions
- Dividing by $\sigma(Z)$ puts LO, NLO on equal footing
- Pythia does a good job at low jet E_{T}

Z + b-Jets

- ALPGEN (LO) and MCFM (NLO) undershoot data in several bins
- Pythia on target in some regimes - despite LO predictions being low in other analyses (eg, Z+jets).

Publication in preparation.

W/Z + b-Jets: Summary

CDF Data Pythia ALPGEN Herwig NLONLO(corrd)

$\sigma(\mathrm{Z}+\mathrm{b} j \mathrm{jet})(\mathrm{pb})$	$0.9 \pm 0.1 \pm 0.1$	-	-	-	0.51	0.53
$\sigma(\mathrm{Z}+\mathrm{b} \mathrm{jet}) / \sigma(\mathrm{Z})(\%)$	$0.34 \pm 0.05 \pm 0.04$	0.35	0.21	0.21	0.21	0.23
$\sigma(\mathrm{Z}+\mathrm{b} j \mathrm{jet}) / \sigma(\mathrm{Z}+\mathrm{jet})(\%)$	$2.11 \pm 0.33 \pm 0.34$	2.18	1.45	1.24	1.88	1.77
$\sigma(\mathrm{W}+\mathrm{b}$ jet) (pb)	$2.7 \pm 0.3 \pm 0.4$	-	0.8	-		

- More studies for $W+b$-jets are forthcoming

Raw NLO predictions corrected for underlying event and hadronization effects.

- Need to understand NLO predictions
- In $Z+b$-jets it is strange that the NLO prediction undershoots data
- Borne out in $W+b$-jets?

Conclusions

- W/Z + jets physics plays an important role in current collider physics programs
- Current NLO predictions for W/Z + look to be accurate, higher multiplicities desirable
- W/Z+b-jets studies have indicated deficiencies in both LO and NLO predictions; more study and more data is needed
- W+single c studies indicate reasonable agreement with NLO, LO predictions

Backup Slides

W + Inclusive Jets

MCFM : MCFM (NLO)

SMPR :

MadGraph (LO) + Pythia (shower) + CKKW matching

ALPGEN (LO) + Herwig (shower) + MLM matching
 MLM :

- CDF II / MLM Scale uncertainty
- CDF II / SMPR Scale uncertainty

W + Inclusive Jets: Definition of Terms

- MCFM: Monte Carlo for Femtobarn Processes

MCFM : MCFM (NLO)

- NLO predictions for cross sections and kinematics
- MLM: Michelangelo Mangano, author of ALPGEN

MLM :

ALPGEN (LO) +
Herwig (shower) + MLM matching

SMPR :

MadGraph (LO) + Pythia (shower) + CKKW matching

- ALPGEN, MadGraph: matrix element generators
- Generate fixed order processes (eg., W+0,1,2,3 partons for W+jets)
- Shower the N-parton final state to get N-jets (eg. Pythia or Herwig)
- Gather all the fixed order samples (eg., W+N-p for W+jets)
- Remove double-counting via matching algorithm
- MLM matching:
- Allow event iff $\mathrm{N}_{\text {jets }}=\mathrm{N}_{\text {partons }}$ (exclusive) or $\mathrm{N}_{\text {jets }} \geq \mathrm{N}_{\text {partons }}$ (inclusive)
- CKKW matching:
- Assign each event weights from α_{s} nodes, legs
- Veto event if event weight is below some cut
- Use shower to add legs only up to some cutoff
- SMPR: variant of CKKW, named after S Mrenna and P Richardson

Identifying b Jets

- \boldsymbol{B} hadron lifetime: $\sim 1.5 \mathrm{ps}$
- Large boost ($\mathrm{v} \sim 0.95 \mathrm{c}$) means the B lifetime is long in the lab frame
- B travels macroscopic distance before decaying which we can detect

- See if they intersect at a common point
- Require the common point be significantly displaced from the primary p-p collision point

	Meaning	Typical	Resolution
$\boldsymbol{d}_{\boldsymbol{0}}$	Track impact parameter	150 um	40um
$\boldsymbol{L}_{\boldsymbol{2} \boldsymbol{d}}$	Vertex displacement	$2-3 \mathrm{~mm}$	100 um

$W+b-\mathrm{Jets}$

Data - MC Comparison

W + Single c Production

Signed μ track impact parameter significance.
$\mu \mathrm{p}_{\mathrm{T}}$ relative to jet axis

