

HCP2008 Galena, IL 2008 - 05 - 27

W mass measurement at the Tevatron

Ilija Bizjak, University College London for the CDF collaboration

Outline

- 1) Motivation for a W mass measurement
- 2) Measurement of the W mass at a p-p̄ collider
- 3) The first measurement of the W mass with Tevatron RunII data

- 4) Implications for the EW constraints on Higgs mass
- 5) First look at the ≈2.4fb⁻¹ data

Motivation for W mass measurements

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} \left(\frac{1}{1 - \Delta r} \right)$$

Radiative corrections (Δr) dominated by top quark and Higgs loop allows constraint on Higgs mass

$$\Delta m_W \propto m_t^2 \qquad \Delta m_W \propto \ln(m_H/m_Z)$$

With improved precision also sensitive to possible exotic radiative corrections

To achieve a similar constraint on $m_H: \Delta M_W \approx 0.006 \Delta M_+$ Current $\Delta M_{+} = 1.4$ GeV corresponds to $\Delta M_{W} = 8$ MeV

The m_H constraint is limited by the uncertainty on m_W

W production and decay

$$m_T = \sqrt{2p_T^{\ l}p_T^{\ v}(1-\cos\phi_{lv})}$$

Find M_W for which the simulated m_T corresponds best to the data

I. Bizjak @ HCP2008 4/23

Measurement strategy

W mass template fits to m_T , transverse lepton momentum/energy and \cancel{E}_T

For template fits we need:

A Fast simulator of W/Z production/decays

With calibrated detector simulation

contribution of backgrounds added to the templates

PDFs, boson p_T , EWK corrections

Calibrate I track momentum with mass measurements of J/ ψ and Y(1S)

Calibrate calorimeter energy using track momentum of e from W decays

Calibrate recoil simulation with Z decays

I. Bizjak @ HCP2008 5/23

Momentum scale using Y(1S) and J/ψ decays

Use precisely determined Y(15) and J/ψ masses to tune momentum scale in the $\mu\mu$ decay channel

 J/ψ muon momenta much lower than in W/Z decays : fit the scale in bins of <1/p_{T}> and extrapolate to high momenta

Momentum scale determination

A combined J/ψ and Y(15) momentum scale, with the cross-check in $Z-\mu\mu$

 ΔM_W^{μ} (momentum scale) = 17MeV

Test the calibrated momentum scale:

measure Z mass and compare to the world average (91188 MeV)

Electron simulation

Energy scale and resolution calibration

Use calibrated momentum + electron simulation to calibrate the energy scale: peak of the E/p distribution in the $W\rightarrow ev$ decays

Non-linear calorimeter response also simulated (measured on E/p)

Test the scale in a Z mass fit:

PDG $m_z=91188\pm2$ MeV

Final E/p and Z mass fit scales and resolutions combined

$$\begin{cases} \Delta m_{W(scale)} = 30 \text{ MeV} \\ \Delta m_{W(resol)} = 9 \text{ MeV} \end{cases}$$

Hadronic Recoil

Calorimeter deposits from initial state QCD and the underlying event

Hard and soft components to the recoil resolution

Use the Z decays to calibrate recoil scale $R=u_{meas}/u_{true}$ as a function of Z p_T $\Delta m_W=9MeV$

Calibrate hard and soft resolution components in η and ξ

$$\Delta m_W = 7 MeV$$

$$CDE II \qquad (1 dt \approx 200 pb^{-1})$$

Hadronic Recoil: W decays

Validating the recoil model: description of the W recoil distributions

(W boson p_T , measured in the recoil)

 $\mathbf{u}_{||}$ -the component parallel to the charged lepton direction

directly affecting m_T

Theoretical uncertainties

Momentum fraction taken by the partons [JHEP 0207,012 (2002)]

Use CTEQ6M Parton distribution functions (PDFs), observe shifts using PDFs that span the parameter uncertainty

 $\Delta m_w = 11 MeV$

Final state QED radiation

Use a WGRAD that calculates the exact one photon contribution, take 10% of the 1photon effect to estimate missing higher orders based on Horace [PRD69,037301 (2004)]

 $\Delta m_W^e = 11 MeV$ $\Delta m_W^{\mu} = 12 MeV$

Boson p_T simulation

[PRD67,073016 (2003)]

Predicted by the resbos generator, where the non-perturbative region of low p_T is parameterized and obtained from a fit to Z boson p_T

 $\Delta m_w = 3 MeV$

Fits for the W mass - m_T

C	Dŧ	3	I.	

 $\int Ldt \approx 200 \text{ pb}^{-1}$

m _⊤ Uncertainty [MeV] Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	9	9	9
Recoil Resolution	7	7	7
u _{II} Efficiency	3	1	0
Lepton Removal	8	5	5
Backgrounds	8	9	0
$p_T(W)$	3	3	3
PDF	11	11	11
QED	11	12	11
Total Systematic	39	27	26
Statistical	48	54	0
Total	62	60	26

Background contributions:

simulate using MC:

W EWK backgrounds (Z , τ decays)

Obtain from sidebands in data:

Electrons: Multi-jet backgrounds

Muons: decays in COT of $\boldsymbol{\pi}$ and kaons

Fits for the W mass II

The result and constraints

$$m_W = 80413 \pm 34 \text{ MeV (stat)} \pm 34 \text{ MeV (sys)}$$

= 80413 ± 48 MeV (stat + sys) [PRL 99,151801 (2007)]

Central value: 80392 -> 80398 MeV Uncertainty: -15% (29 to 25 MeV)

predicted Higgs mass: 86^{+36}_{-27} GeV $M_{\rm H} < 160$ GeV @ 95% CL

What can we do with > $2fb^{-1}$?

m _⊤ Uncertainty [MeV]	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	9	9	9
Recoil Resolution	7	7	7
u _∥ Efficiency	3	1	0
Lepton Removal	8	5	5
Backgrounds	8	9	0
$p_T(W)$	3	3	3
PDF	11	11	11
QED	11	12	11
Total Systematic	39	27	26
Statistical	48	54	0
Total	62	60	26

Can surpass the current world average with a single measurement: $\Delta M_w^{CDF} < 25 \text{ MeV}$

Provided:

- detector aging
- averaging over longer data-taking period
- larger spread and higher average luminosity

do not deteriorate data quality

Instantaneous luminosity

Higher instantaneous luminosities L and much larger spread

 $\langle L \rangle = 70 \times 10^{30} \text{ s}^{-1} \text{cm}^{-2}$ (dotted line)

We are able to capture luminosity dependence of the sum of all deposits in the calorimeter (ΣE_T)

 $\Sigma \mathbf{E}_{\mathsf{T}}$ is the basis for recoil resolution description

J/ψ and Y(1S) fits for the momentum scale

Example J/ ψ plot for the high momentum bin 7.6 < p_T^{μ} < 10GeV

	$\Delta \mathbf{m}_{W}^{\;\;scale\;(stat)}$
published (200pb ⁻¹)	20MeV
expected (2.3fb ⁻¹)	6MeV
fit (2.3fb ⁻¹)	6MeV

(Expected from scaling the integrated luminosity)

$$Y(1S) \rightarrow \mu^{+}\mu^{-}$$
 (beam constrained fit)

	$\Delta \mathbf{m}_{W}^{ ext{ scale (stat)}}$
published (200pb ⁻¹)	5MeV
expected (2.3fb ⁻¹)	1MeV
fit (2.3fb ⁻¹)	1MeV

Z mass fits

Z mass fit using tracking info only

Sensitive to photon emission modelling (bremsstrahlung).

Sensitive to material, momentum and energy calibrations.

I. Bizjak @ HCP2008 21/23

m_T fits

Conclusions

[PRL 99,151801 (2007)]

The first RunII CDF W mass measurement is the single best W mass measurement, the total uncertainty is 48MeV

This measurement is better than expected by statistical scaling the RunI measurements: using quarkonia for momentum scale determination,...

We started looking at 12x more data:

Data quality good

Statistical uncertainty as expected

Instantaneous luminosity distribution seems to not be an issue

We aim for a W mass determination with a total uncertainty of < 25MeV!

Backup slides

CDF at the Tevatron

CDF detector

Event selection for the published analysis (200pb-1)

$$s(W \to lv) = 2775 pb$$

After event selection $p_T^l / E_T^l > 30 \text{ GeV}$ $E_T > 30 \text{ GeV}$ u < 15 GeV $60 < m_T < 100 \text{ GeV}$

51,128 W→µv candidates 63,964 W→ev candidates

$$s(Z\rightarrow ll) = 254.9 pb$$

After event selection $p_{T}^{l} / E_{T}^{l} > 30 \text{ GeV}$ u < 15 GeV $66 < m_{ll} < 116 \text{ GeV}$

4,960 $Z\rightarrow\mu\mu$ candidates 2,919 $Z\rightarrow$ ee candidates

Simulating the passage through detector material

200pb⁻¹

Material scale S_{mat} : Fine-tune the amount of material using the tail

 $Z \rightarrow e^+e^-$ (track only)

Fitted value consistent with world average value (91188 MeV)

