DUNE FD Calibrations

Contribution to Interface Workshop

Caveat:

Calibration system design still in flux.

José Maneira (LIP), Kendall Mahn (MSU)

January 25, 2019

Planned systems

Laser

- high intensity, to ionize Argon along tracks
- measure E field map
- Radioactive source
 - single 9 MeV gamma from Cf/Ni source
 - deployed outside FC
- Pulsed neutron source
 - bring neutrons from DD gen. down to 57 keV
 - neutron capture events in 1/2 of the detector

Interfaces with:

- 1. Detector Safety
- 2. Life/Personnel Safety
- 3. DAQ
- 4. Databases

Personnel Safety

- Laser
 - Eye safety during operation of class 4 laser
 - Interlock on laser box closure
 - Trained personnel with PPE for one-time alignment
- Pulsed neutron source (radiation danger)
 - Proper design of shielding
 - External neutron flux monitoring, possible interlock
 - Possibility of remote operation
- Radioactive source (radiation danger)
 - Glovebox for handling
 - Shielded storage box + safe storage area

Detector Safety (1/2)

- Safety of Calibration equipment
 - During installation
 - Other equipment (DSS, HV, APA) hitting laser periscopes, if already installed inside cryostat
 - During installation and operations
 - Calibrations will populate a large part of the cryostat roof. Moving equipment/personnel bumping calibration equipment, misaligning laser.
 - During operations
 - Humidity ingress → ice blocking laser mechanism.
 - Large currents → lateral movement of deployed source

Detector Safety (2/2)

- Safety of other DUNE components
 - Photon detection system
 - Laser beam hitting PD at higher rates than normal →
 Software to block beam while mirrors stopped or
 pointing at PD
 - Cryostat insulation
 - Activation of materials by neutron exposure → check materials now, limit pulse intensity

Electrical

- Pulsed neutron source (x2)
 - Starfire n-Gen300 DD generator
 - Op. voltage: 150 kV; Power: 400 W
 - Water cooling closed loop (no ext. water req.)
 - Power and cooling through 3.18 m umbilical
- High power UV laser (x20)
 - Surelite Continuum Nd-YAG 60mJ/pulse, 10Hz
 - 200 240 VAC, single φ, 10 A, 50/60 Hz
 - Also closed loop water cooling
 - Also fed from nearby power source
- Additional hardware (lower power)
 - · Step motors to drive laser mirror movement, radioactive source
 - Laser monitor, neutron monitor

DAQ

Calibration systems must provide DAQ:

- "Fast signals"
 - Trigger signal for laser or pulsed neutrons
 - Pulse intensity monitoring for neutrons
- Slow signals
 - System is powered on/personnel is on roof
 - Which of the lasers (in which FT) is on?
 - Intensity attenuator settings
 - Encoder settings indicating mirror position
 - Which laser positioning diode fired?
 - Which neutron gen is on?
 - DD gen rate/width settings?
 - Radioactive source position encoder information

Databases

- Description of installed systems
 - Position of laser mirrors, parameters relating encoder readings to angles in detector
 - Position of laser positioning diodes/fibers
 - Results from calibration of system, relating attenuator settings to pulse intensity
 - Full geometry of neutron source moderator
 - Description of DD neutron energy/angle spectrum
 - Rope position offsets for source movement
 - Full geometry of radioactive source
- Operational parameters
 - All the signals described in previous page