DUNE FD Calibrations

Contribution to Interface Workshop

Caveat:
Calibration system design still in flux.

José Maneira (HTP), Kendall Mahn (MSU)
January 25, 2019

Planned systems

- Laser
- high intensity, to ionize Argon along tracks
- measure E field map
- Radioactive source
- single 9 MeV gamma from Cf/Ni source
- deployed outside FC
- Pulsed neutron source
- bring neutrons from DD gen. down to 57 keV
- neutron capture events in $1 / 2$ of the detector

Interfaces with:

1. Detector Safety
2. Life/Personnel Safety
3. DAQ
4. Databases

Personnel Safety

- Laser
- Eye safety during operation of class 4 laser
- Interlock on laser box closure
- Trained personnel with PPE for one-time alignment
- Pulsed neutron source (radiation danger)
- Proper design of shielding
- External neutron flux monitoring, possible interlock
- Possibility of remote operation
- Radioactive source (radiation danger)
- Glovebox for handling
- Shielded storage box + safe storage area

Detector Safety (1/2)

- Safety of Calibration equipment
- During installation
- Other equipment (DSS, HV, APA) hitting laser periscopes, if already installed inside cryostat
- During installation and operations
- Calibrations will populate a large part of the cryostat roof. Moving equipment/personnel bumping calibration equipment, misaligning laser.
- During operations
- Humidity ingress \rightarrow ice blocking laser mechanism.
- Large currents \rightarrow lateral movement of deployed source

Detector Safety (2/2)

- Safety of other DUNE components
- Photon detection system
- Laser beam hitting PD at higher rates than normal \rightarrow Software to block beam while mirrors stopped or pointing at PD
- Cryostat insulation
- Activation of materials by neutron exposure \rightarrow check materials now, limit pulse intensity

Electrical

- Pulsed neutron source (x2)
- Starfire n-Gen300 DD generator
- Op. voltage: 150 kV; Power: 400 W
- Water cooling closed loop (no ext. water req.)
- Power and cooling through 3.18 m umbilical
- High power UV laser (x20)
- Surelite Continuum Nd-YAG 60mJ/pulse, 10 Hz
- 200-240 VAC, single $\phi, 10$ A, $50 / 60 \mathrm{~Hz}$
- Also closed loop water cooling
- Also fed from nearby power source
- Additional hardware (lower power)
- Step motors to drive laser mirror movement, radioactive source
- Laser monitor, neutron monitor

DAQ

- Calibration systems must provide DAQ:
- "Fast signals"
- Trigger signal for laser or pulsed neutrons
- Pulse intensity monitoring for neutrons
- Slow signals
- System is powered on/ personnel is on roof
- Which of the lasers (in which FT) is on?
- Intensity attenuator settings
- Encoder settings indicating mirror position
- Which laser positioning diode fired?
- Which neutron gen is on?
- DD gen rate/width settings?
- Radioactive source position encoder information

Databases

- Description of installed systems
- Position of laser mirrors, parameters relating encoder readings to angles in detector
- Position of laser positioning diodes/fibers
- Results from calibration of system, relating attenuator settings to pulse intensity
- Full geometry of neutron source moderator
- Description of DD neutron energy/angle spectrum
- Rope position offsets for source movement
- Full geometry of radioactive source
- Operational parameters
- All the signals described in previous page

