Deep Neural Networks for 3D Data Reconstruction

Kazuhiro Terao SLAC National Accelerator Lab. POND² @ Fermilab December 6_{th}, 2018

1001

NATIONAL ACCELERATOR LABORATORY

LArTPC Data Reconstruction

Particle imaging = visually intuitive

Run 3493 Event 41075, October 23rd, 2015

LArTPC Data Reconstruction

- Interaction vertex
- Particle clustering
 - "line" vs. "shower"
 - Track fitting
- Particle type ID
- Particle energy/momentum
- Neutrino flavour & energy

Reconstruction = Physical Feature Extraction

Run 3493 Event 41075, October 23rd, 2015

75 cm

LArTPC Data Reconstruction

- Interaction vertex
- Particle clustering
 - "line" vs. "shower"
 - Track fitting
- Particle type ID
- Particle energy/momentum
- Neutrino flavour & energy

Reconstruction = Physical Feature Extraction

Machine Learning and Computer Vision

How to write an algorithm to identify a cat?

... very hard task ...

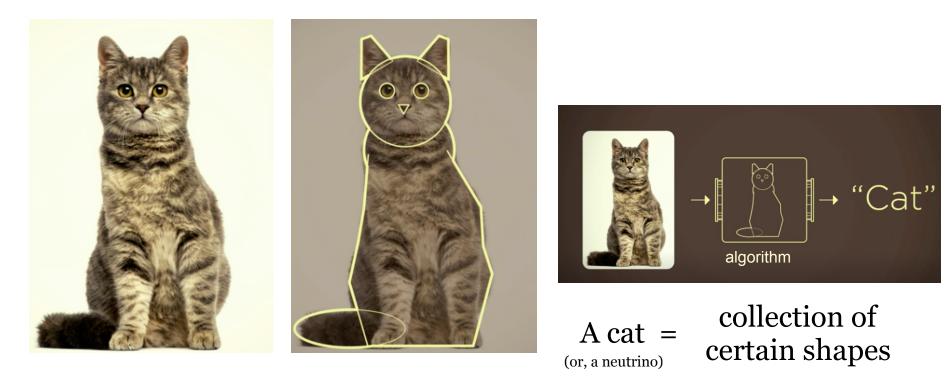
83 09 40 19 40 11 31 35 60 43 66 14 48 37 52 77 23 22 74 09 90 36 12 29 39 78 31 71 73 22 50 92 3 35 42 48 72 85 27 79 08 41 31 09 53 05 40 04 31 91 56 26 85 68 36 43 54 21 33 81 30 72 06 79 34 39 59 70 03 24 91 03 40 /9 60 10 25 54 71 24 50 87 88 47 68 31 42 09 77 40 07 26 73 18 55 38 73 50 47 22 21 88 78 02 95 19 59 60 93 73 40 67 99 54 07 67 38 55 51 26 81 43 66 89 69 92 94 50 08 94 63 33 71 95 38 46 63 07 66 68 41 49 34 33 66 76 68 97 53 18 38 64 86 66 06 68 13 01 89 00 80 70 21 27 14 90 04 28 93 88 02 97 92 41 21 54 24 33 97 10 33 47 15 02 57 20 43 09 71 54 73 29 57 57 02 84 20 31 97 41 73 19 29 17 28 99 16 23 95 05 34 86 46 18 95 65 62 28 62 95 35 84 18 22 81 59 18 34 46 77 60 28 62 16 61 72 19 88 14 43 23 64 76 15 68 89 13 74 48 90 12 59 02 31 14 34 77 47 04 69 99 /0 01 05 77 88 20 63 57 41 50 68 04 30 62 09 67 61 86 36 76 07 95 11 52 04 91 58 59 30 09 46 95 31 71 43 26 48 81 01 86 71 64 31 49 99 60 63 97 61 43 86 36 53 82 31 00 52 63 78 18 10 79 39 77 28 39 17 76 81 93 35 02 78 10 30 35 86 24 93 75 35 70 30 16 07 35 08 61 82 85

Image credits: TED talk by Fei-Fei Li

SLAC

Development Workflow for **non-ML** algorithms

1. Write an algorithm based on basic (physics) principles



Development Workflow for **non-ML** algorithms

- 1. Write an algorithm based on basic (physics) principles
- 2. Run on simulation/data samples
- 3. Observe failures, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Development Workflow for **non-ML** algorithms

- 1. Write an algorithm based on basic (physics) principles
- 2. Run on simulation/data samples
- 3. Observe failures, implement fixes/heuristics
- 4. Iterate over 2 & 3 till a satisfactory level is achieved
- 5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Machine Learning

- Learn patterns from data
 - automation of steps 2, 3, and 4
- Chain algorithms & optimize
 - step 5 addressed by design
- "Deep Learning"
 - Revolutions in computer vision using deep **neural networks**

Natural Neural Network

Machine Learning Revolution with Deep Neural Networks

2012

Public image categorization competition w/ 1.2M images, 1000 object categories.

IM . GENET

"Deep" convolutional neural network broke the past record by a large margin

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca

Ilya Sutskever University of Toronto ilya@cs.utoronto.ca

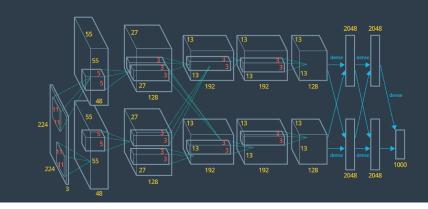
Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

> 30,000

Abstract

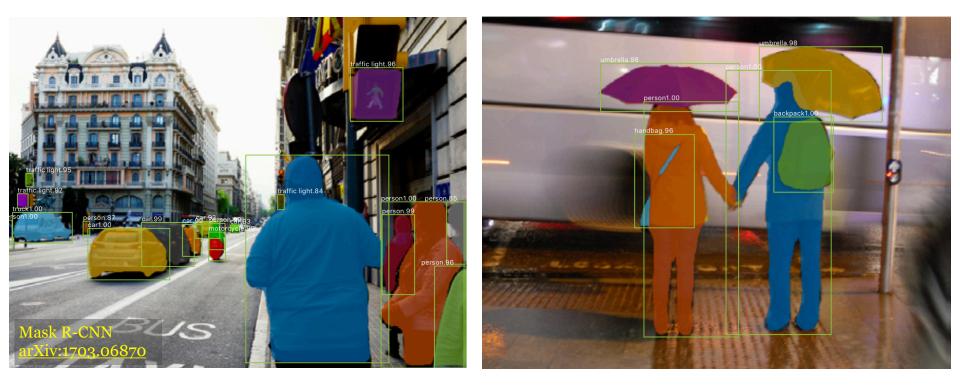
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

AlexNet



Machine Learning Evolution of DNN: Beyond Image Classifications SLAC

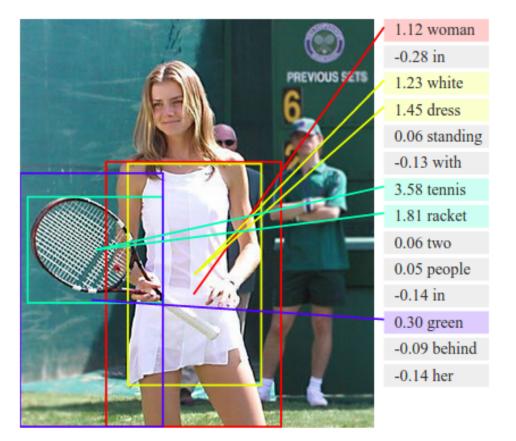
Detection of Image Contexts



Machine Learning Evolution of DNN: Beyond Image Classifications

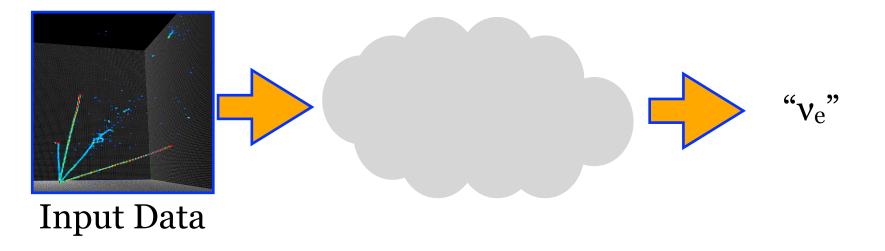
Interpretation of Contexts' Correlation

"girl in pink dress is jumping in air."



Machine Learning ... for LArTPC Image Analysis

DNN is an efficient data transformation technique. "Image classification" transforms visually intuitive 2D/3D data into an array of discriminants (classes).

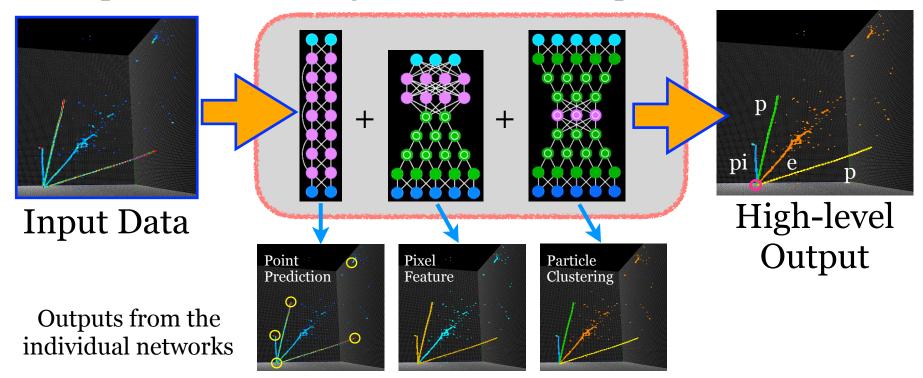


SLAC

Machine Learning ... for LArTPC Data Reconstruction

Multi-task Deep Neural Network

Introduce physical feature extraction tasks (reconstruction) to bias the data transformation. Implicitly introduce physics concepts + construct logic for the final output.

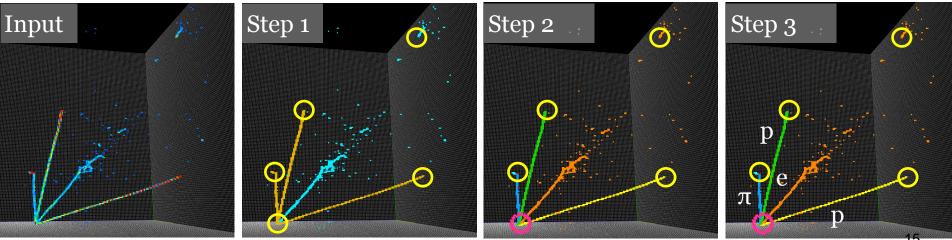


SLAC

Machine Learning ... for LArTPC Data Reconstruction

ML-based Full Data Reconstruction Chain

- A cluster of many task-specific networks in 2D & 3D
 - Vertex finding, clustering, particle ID, etc.
- **1**. Space point (track edges) + pixel feature annotation **2**. Vertex finding + particle clustering My ECA □ 3. Particle type + energy/momentum Program **4**. Hierarchy building



<u>SLAC</u>

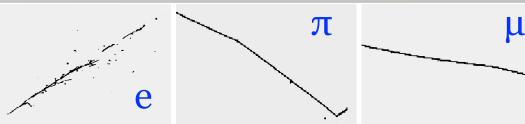
Machine Learning in Computer Vision High-Precision Detector Data Analysis

Image Credit Fermilab Today http://news.fnal.gov/2018/03/when-it-rains-2/

Early Demonstrations Machine Learning for LArTPC Image Analysis

Nu: 0.926

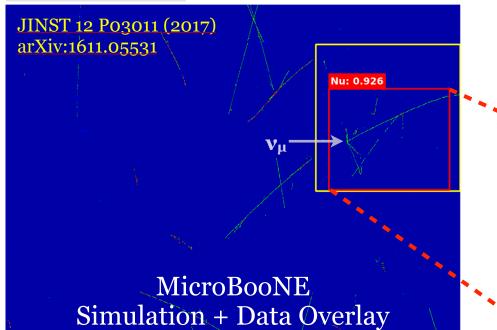
Vu

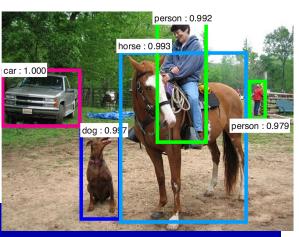


ML Technique @ MicroBooNE LArTPC Detector

Image Classification

- Classify a whole image into object categories
- particle type identification from an image
- signal/background selection





Object detection

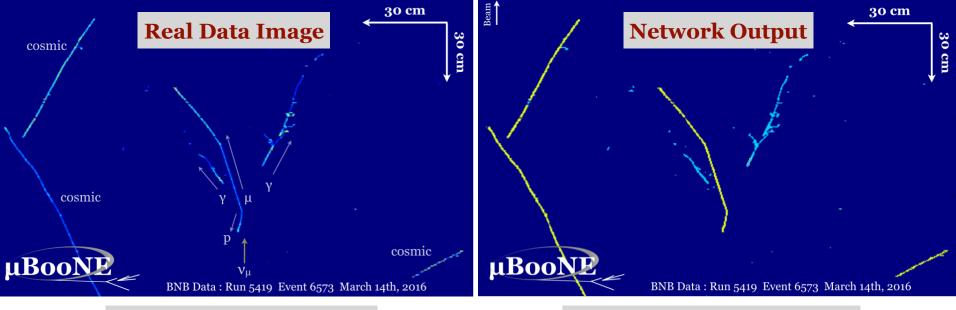
neutrino interaction

vertex localization

Early Demonstrations Machine Learning for LArTPC Image Analysis

Semantic Segmentation

- Recently published ... <u>arXiv:1808.07269</u>
- Pixel-level object classification
 - Separation of EM-particle from other types
 - Key input information for particle clustering
- First time deep neural network validated on LArTPC data



Network Input

Network Output ¹⁸

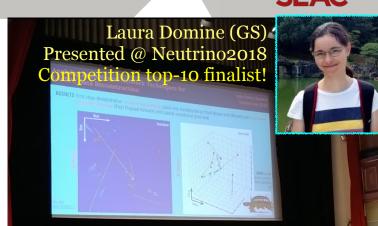
ML Technique

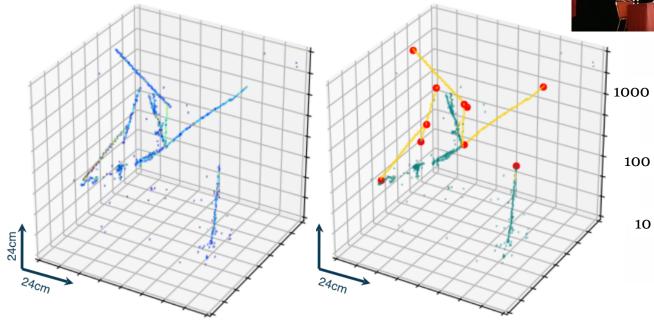
@ MicroBooNE

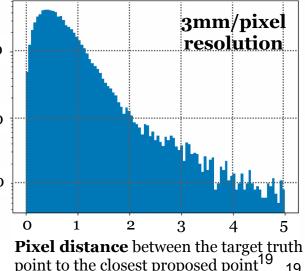
LArTPC Detector

Multi-Task Network Cascade

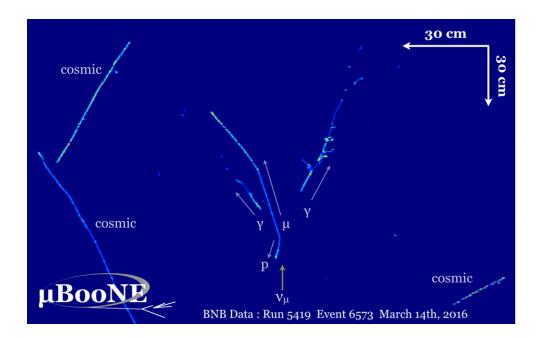
- Chain of Segmentation + Detection
 - Feature points: "shower start" and "track edges"
 - Classify each pixel into "shower" vs. " track"
- Extension to 3D data
 - Change in tensor dimensions, identical algorithms

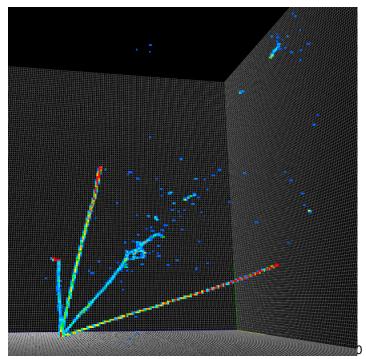




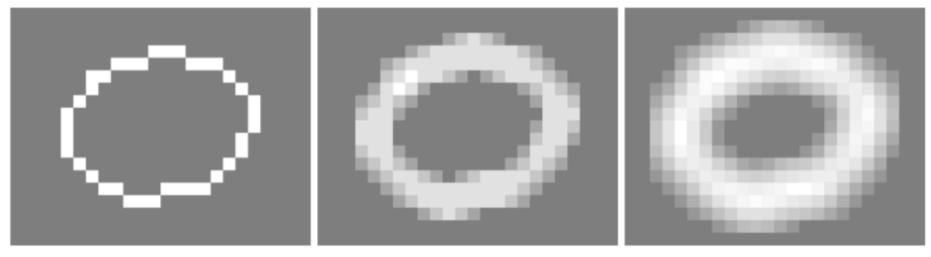


- "Applying for 3D" is simple, but is it scalable?
- LArTPC data is generally sparse but locally dense
 - Mostly zero-filled matrix. CNN = dense matrix operation = bad!
 - Matrix size (volume) scales by power low, but non-zero pixels scales almost linearly (most particle trajectories are locally 1D line)





- "Applying for 3D" is simple, but is it scalable?
- LArTPC data is generally sparse but locally dense
 - Mostly zero-filled matrix. CNN = dense matrix operation = bad!
 - Matrix size (volume) scales by power low, but non-zero pixels scales almost linearly (most particle trajectories are locally 1D line)
- CNN causes "blurring" which can be severe on sparse data



Input

After 1st convolution

After 2nd convolution

- "Applying for 3D" is simple, but is it scalable?
- LArTPC data is generally sparse but locally dense
 - Mostly zero-filled matrix. CNN = dense matrix operation = bad!
 - Matrix size (volume) scales by power low, but non-zero pixels scales almost linearly (most particle trajectories are locally 1D line)
- CNN causes "blurring" which can be severe on sparse data

Solution: Sparse Submanifold Convolution

- **Submanifold** = "Input data with lower effective dimension than the space in which it lives"
- Can extract lower dimensional features effectively
 Ideally suited for our problems
- Developed by <u>Facebook AI Research</u> / Oxford
 - CVPR2018, best 3D semantic segmentation record for ShapeNet (open 3D point-cloud dataset)

Works amazingly well...

	Dense	Sparse
	U-ResNet	U-ResNet
Process time (forward path)	40 ms/img	13 ms/img
Memory (forward path)	13 GB	600 MB
Train time (20 epochs)	9 days	8 hours

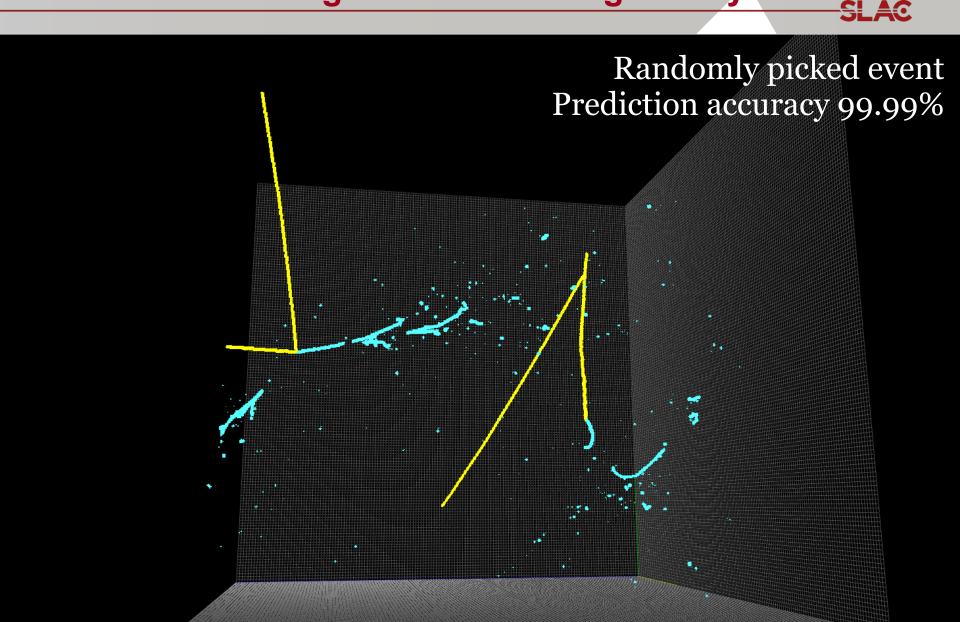
- Using 3D data with 192³ pixels
- 256 image/GPU in forward path
- Trained to reach 99% accuracy in the segmentation task
- Paper w/ more details coming out

This is a game changer...

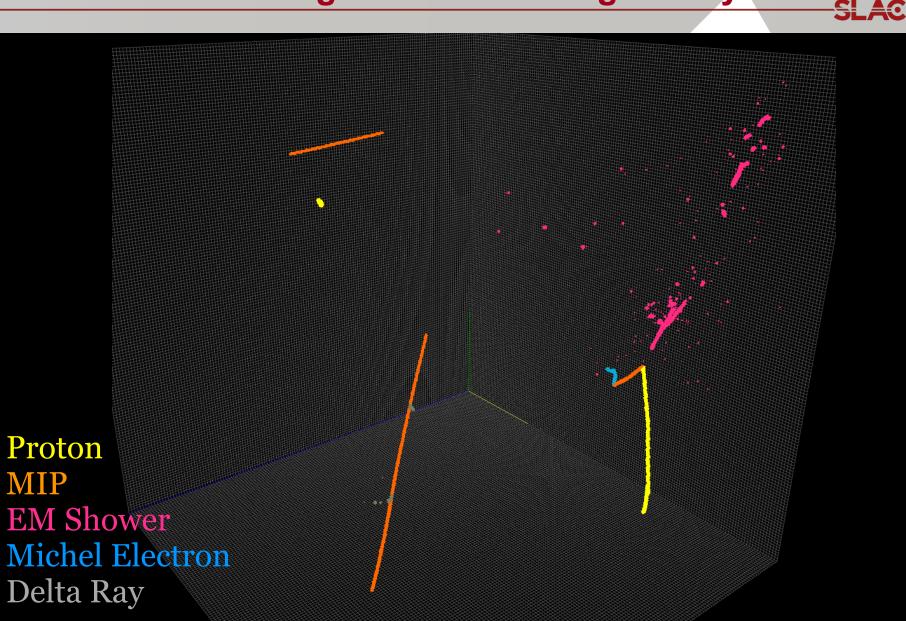
Curse of dimensionality almost addressed = scalable to big data

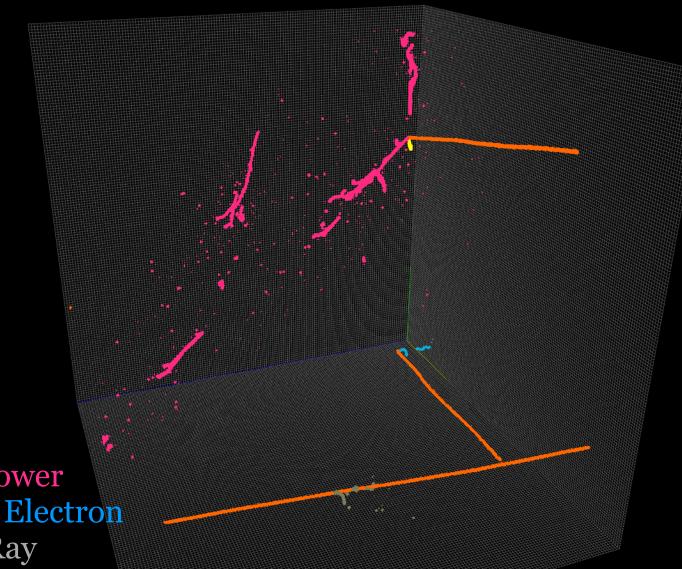
What about accuracy?

It got better because the network can better focus on features







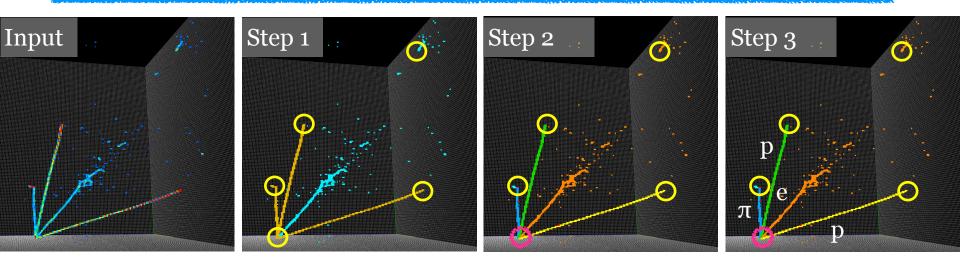


Proton MIP **EM** Shower **Michel Electron** Delta Ray

... wrapping up ...

Where we are...

☑ 1. Space point (track edges) + pixel feature annotation ☑ 2. Vertex finding + particle clustering ☑ 3. Particle type + energy/momentum **4**. Hierarchy building



Aiming to complete the full chain v.1 in early 2019, move to physics analysis applications

Collaboration / Synergies

Wire LArTPC

- WireCell team (BNL) on SBN/DUNE
- Cluster3D (SLAC) on SBN
- LArFlow (Tufts) on MicroBooNE

Pixel LArTPC

- Interest from LBNL/UTA/Bern
 - Looking forward to 2x2 ArgonCUBE modules
 - Plan/Start working with students at LBNL and MSU specifically for DUNE ND

Computing

- ANL demonstrating our code on distributed computing environment
- ALCC with FNAL+ORNL for DUNE ND study on Summit GPU HPC

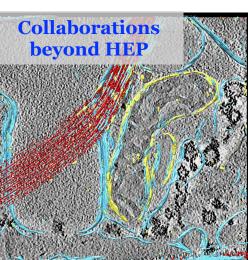
Sharing Our R&D Machine Learning & Broader Impact

DeepLearnPhysics (deeplearnphysics.org)

- **Collaboration** for ML technique R&D
 - ~70 members including HEP exp/theory, nuclear physics, BES (LCLS, SSRL), Cryo-EM, accelerator, AI/CS community
- Open source <u>software/tools</u>, <u>containers</u>, <u>open data</u>
 - our framework to collaborate & share reproducible results

Community building

- In-person tutorials (SLAC,LBNL,FNAL,BNL,VTech,MIT,Columbia...)
- Sharing talk invitations, job/funding opportunities, etc.



SL AC

Sharing Our R&D Machine Learning & Broader Impact

Public Data Set: OSF

🎇 osf home <	My Quick Files	My Projects Search	Support	Donate 🧃	🔵 DeepLe	arnPhysics 🕶
DeepLearnPhysics Public Dataset	Files Wiki Analytics	Registrations Contribu	tors Add-ons	Settings		
DeepLearnPhysics Pi	ublic Dataset			Make Private	Public	۳ o ب
iontributors: DeepLearnPhysics bate created: 2018-12-03 01:23 PM Last Updated ireate DOI iategory: © Project bescription: his is a data sharing project organized by DeepL easty 2 levels of sub-projects. The lowest level pro- nore details.	earnPhysics, a group of research					
Wiki	ď	Citation				~
This is the top level project for data sharing sub researchers in the DeepLearnPhysics organizat and maintain highly reproducible research wor across different domains. We aim to achieve th	Components Add Com			omponent	nponent Link Projects	
1. Publicly available data 2. Publicly available software container 3. Documented results (publication) This project is Read More	Open Samples for Liquid Argon Time Projection Chambers (LATTPCs) DeepLearnPhysics This is a sub-project of DeepLearnPhysics for hosting public data for Liquid Argon Time Projection Chambers (LATTPCs).					
Files	C					
Click on a storage provider or drag and drop t	o upload Q Filter i	Add a tag to enhance	discoverability			
		Add a tag to emante	discoverability			
Name 🔨 🗸	Modified 🔨 🗸					

GitHub docker

Software Containers

	_			_				
•		Search						Dashboard
de	eep			ics/ml-	larcv2	☆		
R	epo Info	Tags	Dockerfile	Build Details	Build Settings	Collaborators	Webhooks	Settings
	Short	Descriptio	on					Ø
ML+LArCV2 docker container image builder								
	Full D	escription	1					C
	build	passing	license MIT	hosted singula	rity-hub docker	build passing		

LArCV: Liquid Argon Computer Vision

Image/Volumetric data processing framework developed for particle imaging detectors (LArTPC primarily though much of capability, if not all, is not constrained to it). Developed to interface (LAr)TPC experiment software data to a deep neural network frameworks. Get to know more about this software @ our Wiki

This repository provides larcv docker images with ML libraries (pytorch/tensorflow) as well as other handy python modules. As a result, images tend to be big. For larcv image with minimal set of libraries (no ML), look at this repository. For singularity images, checkout our singularity-hub collections.

Tags

All tags are built on the base linux images hosted in this repository.

- tf-1.12.0 (Dockerfile) ... tensorflow v1.12.0
- pytorch-0.4.1 (Dockerfile) ... pytorch 0.4.1
- pytorch-dev10152018-scn (Dockerfile)... pytorch development head (for v1.0.0 release), tagged October 15th 2018, also include Sparse Submanifold Convolution external libraries.

Thank you! for your attention :)

Inside me

Take Away Messages

1. Deep neural networks (DNNs) are **efficient image feature extraction techniques** developed in computer vision

2. Sparse Submanifold Convolution is **suited for LArTPC** data and allows scalable DNN development

3. Full reconstruction chain is almost there, then physics!

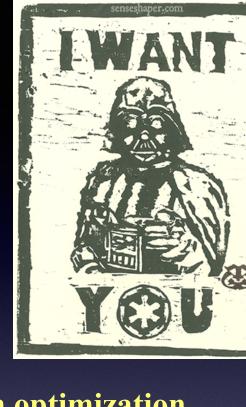
Would love to collaborate?

Projects I am responsible for...

- Deep learning techniques R&D for LArTPCs
- HEP cross-frontier ML techniques R&D

Other projects I work on...

- Fermilab/ORNL for distributed ML algorithm optimization
- LBNL/Fermilab/CalTech for graph NN for particle clustering
- Fermilab for accelerated ML using edge computing devices
- LBNL/BNL for ML-based 3D pattern recognition
- MIT/Columbia for ML-based SBN data reconstruction
- Cryo-EM/SSRL (SLAC) for 3D tomogram analysis (biomedical)
- NASA-Ames/SLAC for pure Anomaly detection, computer vision



Back-up Slides

Liquid Argon Time Projection Chambers

Outline

- 1. Neutrino Experiments & Detectors
- 2. Liquid Argon Time Projection Chambers
- 3. Machine Learning & Computer Vision
- 4. Applications in Data Reconstruction
- 5. Wrap-up

Run₃₆3493 Event 41075, October 23^{rd}

Next Neutrino Detectors?

~mm/pixel spatial resolution ~MeV level sensitivity

MicroBooNE

~87 ton (school bus size)

 ν_{μ}

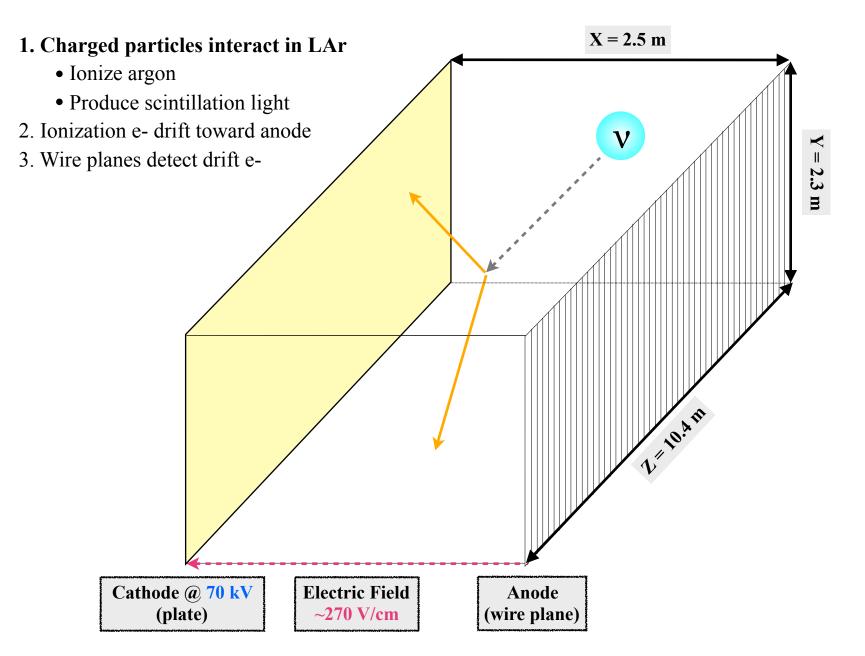
Bubble Chamber

Liquid Argon Time Projection Chamber

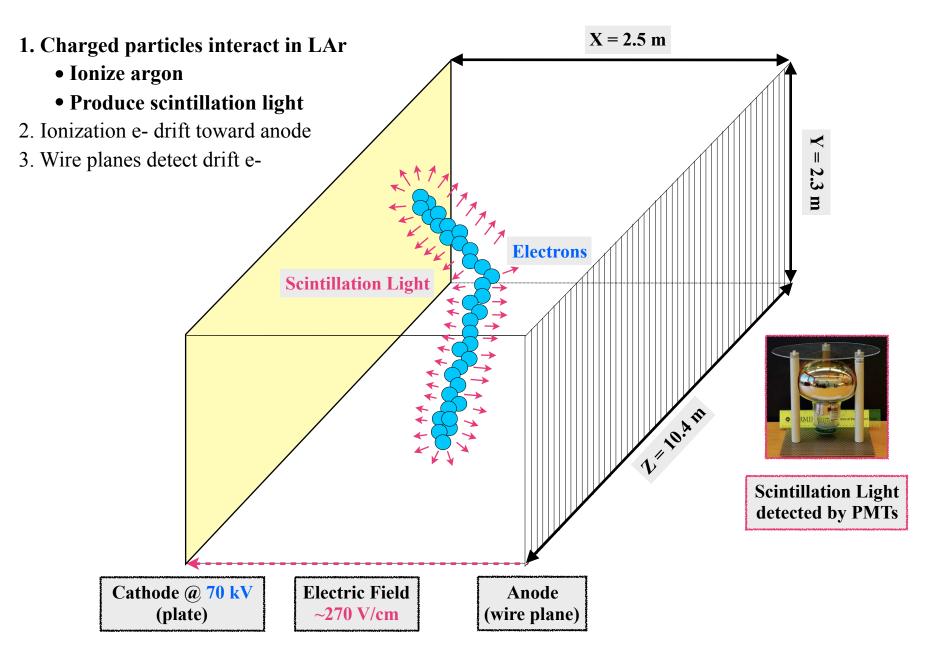
- Chamber-like images: digitized electronics readout
- Calorimetric measurement + scalability to a large mass

2015

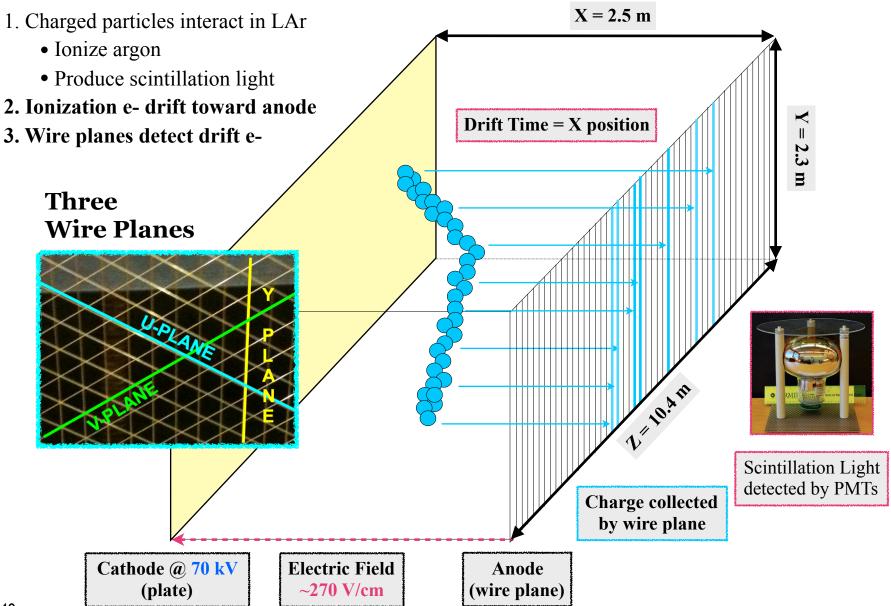
How Wire LArTPC (MicroBooNE) Work (I)

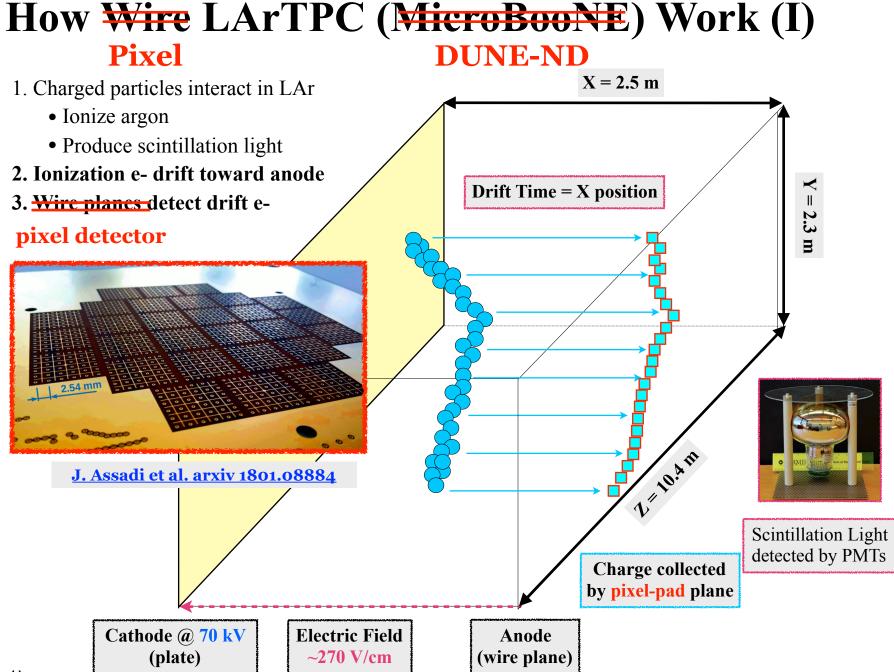


How Wire LArTPC (MicroBooNE) Work (I)

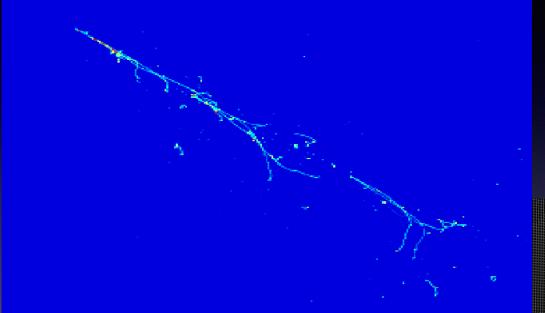


How Wire LArTPC (MicroBooNE) Work (I)



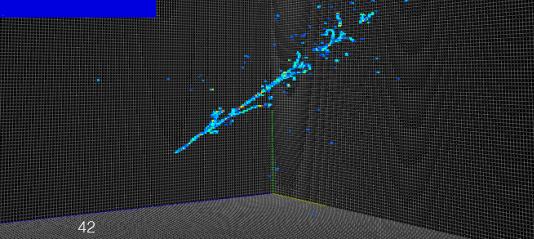


LArTPC: Particle Imaging Detector ... when things work ...



3D Imaging (Pixel Detector)

2D Projection (Wire Detector)



Challenges in Data Analysis?

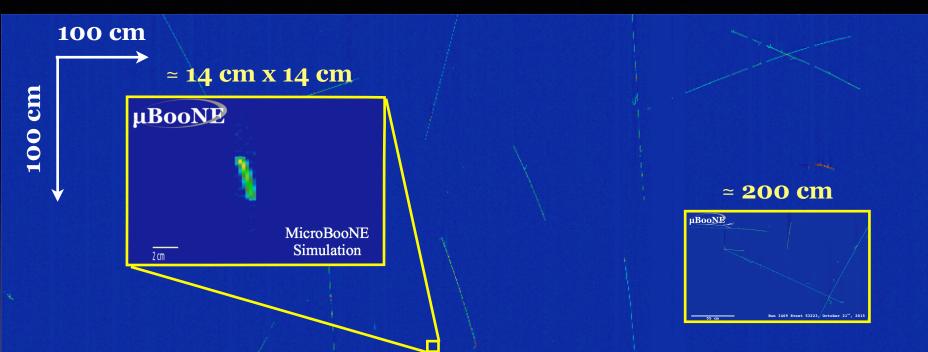
100 cm

100 cm

There may be lots of backgrounds

Cosmic Data : Run 6280 Event 6812 May 12th, 2016

Challenges in Data Analysis?

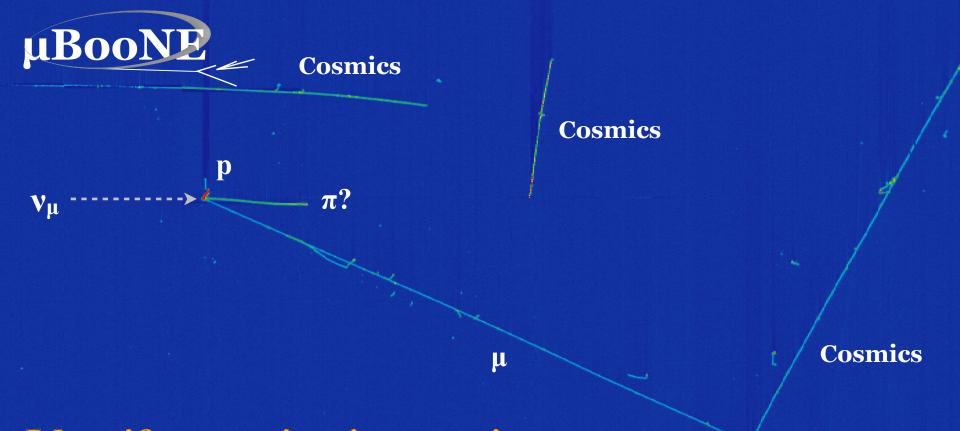


Interaction vertex can be anywhere in LAr, varying in size (cm ~ meters)

Cosmic Data : Run 6280 Event 6812 May 12th, 2016

μBooNE

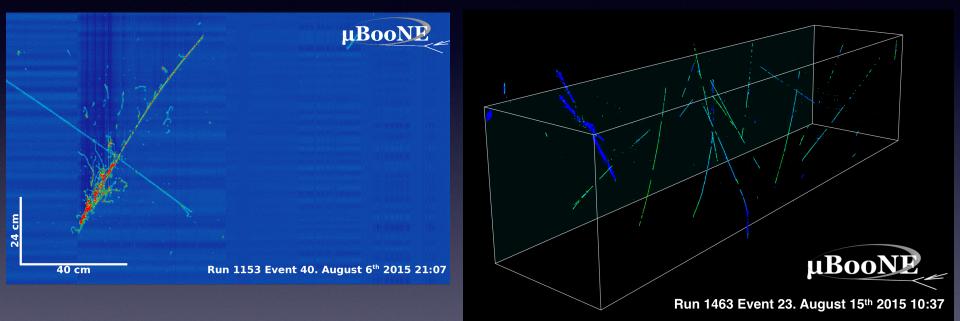
Challenges in Data Analysis?



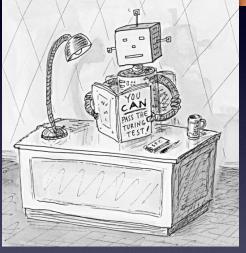
Identify neutrino interaction vertex, cluster individual particle energy depositions

Run 3469 Event 53223, October 21st, 2015

Challenges in Data Analysis? Deal with optical illusions in 2D projections + pattern recognitions in 3D



"Physics features" look obvious to human physicists (eyes) but hand-engineering algorithms to extract them turned out challenging...

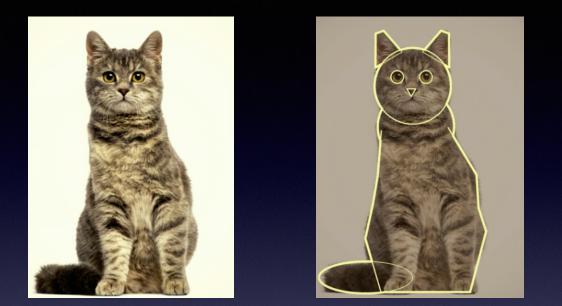


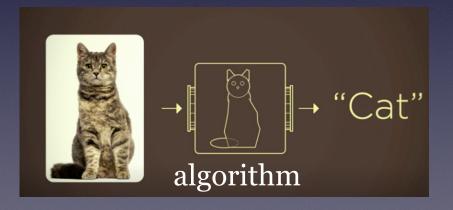
"Fake" celebrity images generated by DNN in 1024 x 1024 resolution

How may I help LArTPCs?

Recent Innovations in Computer Vision and A.I.

Classic Problem: Image Categorization



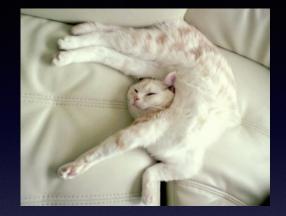


A cat = collection of certain shapes

Taken from slides by Fei-Fei's TED talk

Classic Problem: Image Categorization ... how about these?

Partial cat (escaping fiducial volume)



Stretching cat (DIS?)

Outliers (axions/dark matter)

Taken from slides by Fei-Fei's TED talk

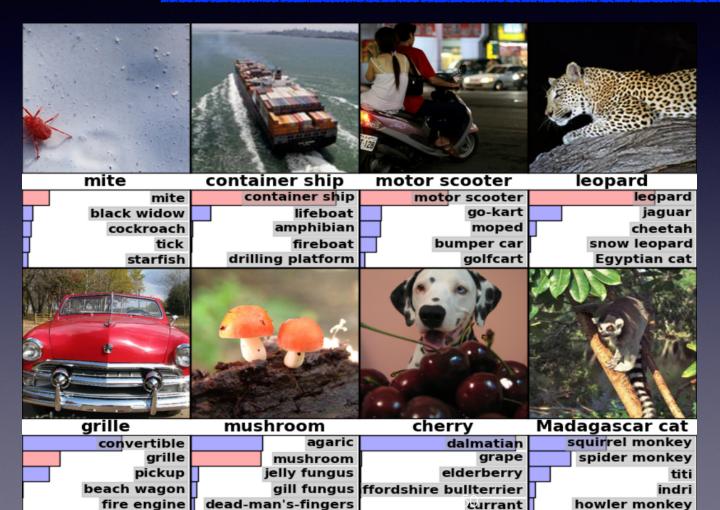
Breakthrough in Computer Vision in 2012

AlexNet: 8-layers deep neural network Birth of "Deep Learning"

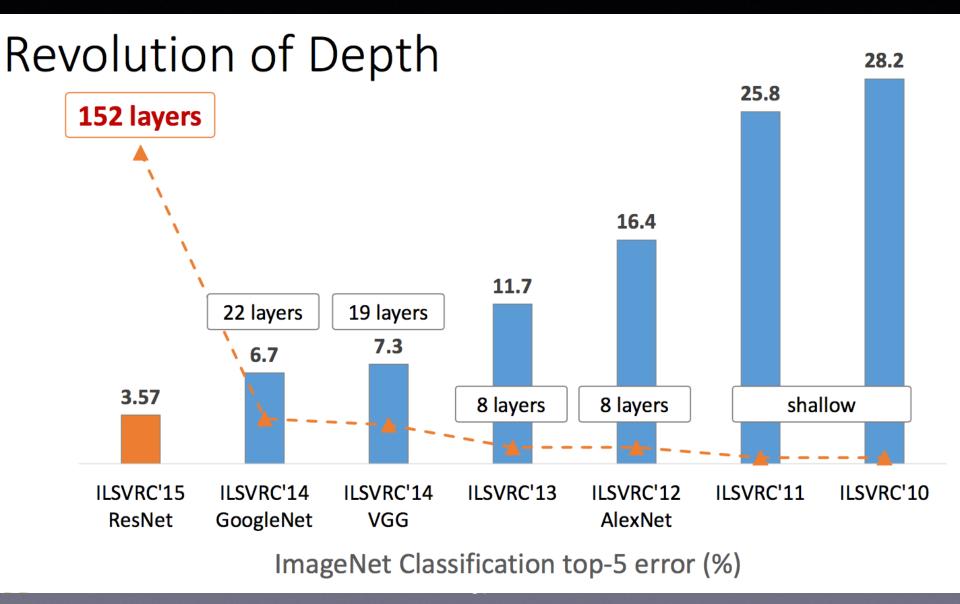
> 20,000 citations!

Leopard

Jaguar

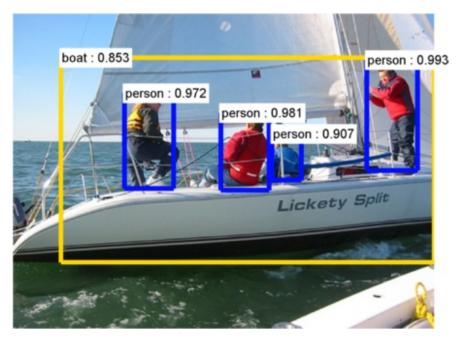


"Super-human" Performance in 4 years



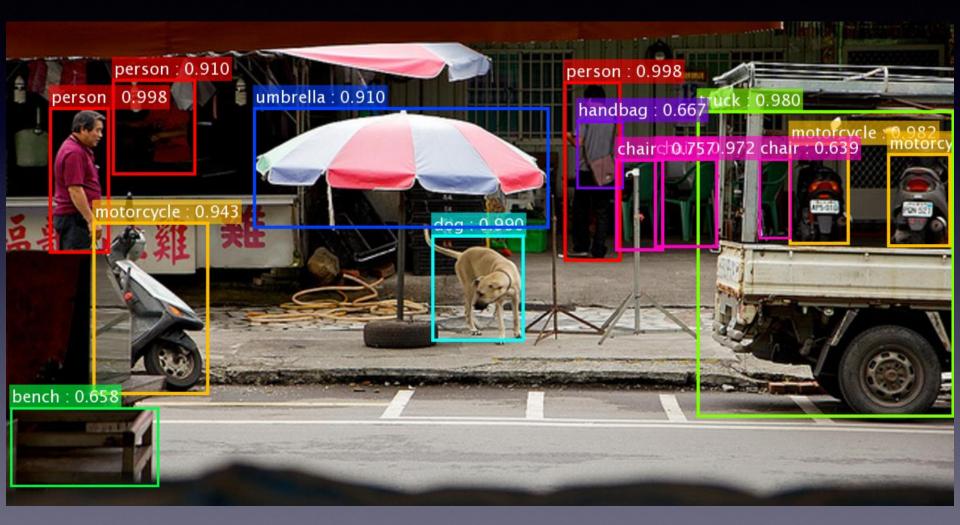
Beyond Image Classification ~ Object Detection ~

Image Classification (what?)

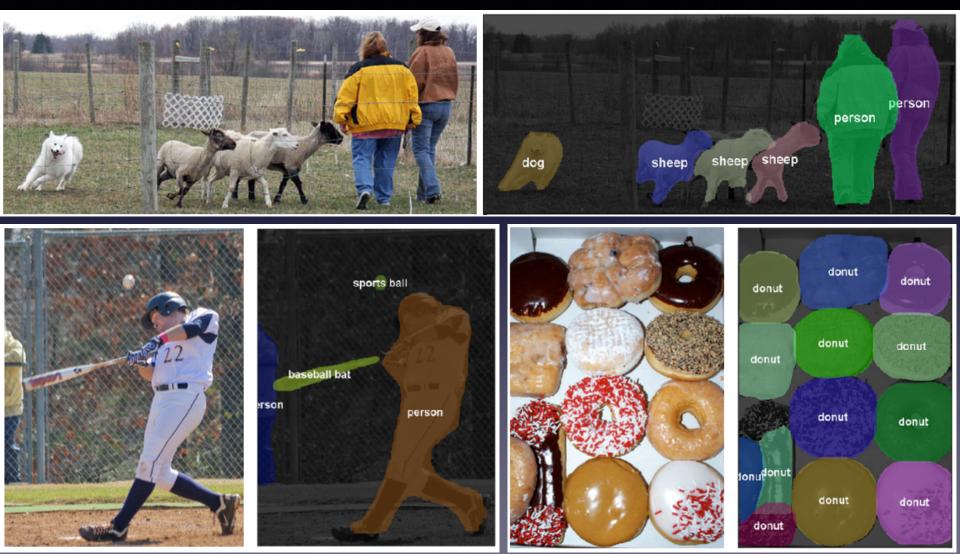


Object Detection (what + where?)

Beyond Image Classification ~ Object Detection ~

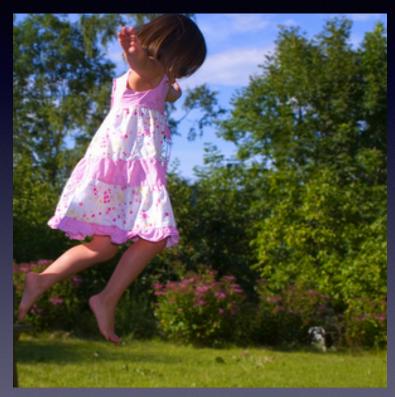


Beyond Image Classification ~ Pixel Segmentation ~



High precision donuts detection

Beyond Image Classification ~ Caption Generation ~



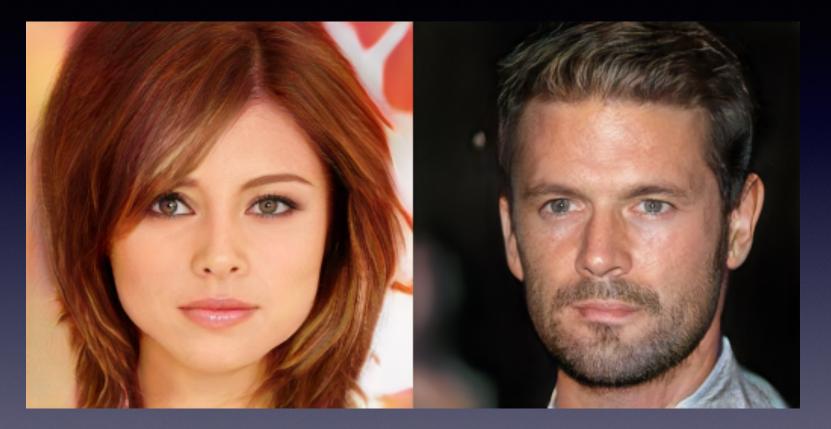
"girl in pink dress is jumping in air"

"man in black shirt is playing guitar"

"black and white dog jæmps over bar"

"construction worker in orange safety vest is working on road"

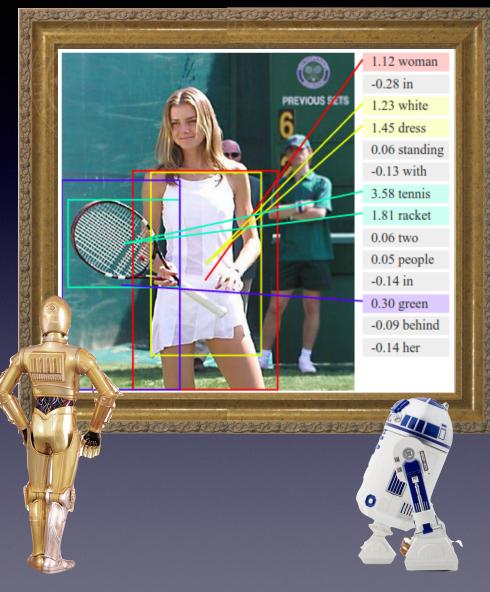
Beyond Image Classification ~ Image Generation ~



"fake celebrity" Photo-realistic human face generation

IGLR 2018 T. Karras, T. Aila, S. Laine, J. Lehtinen

Image context analysis



"Pose" detection

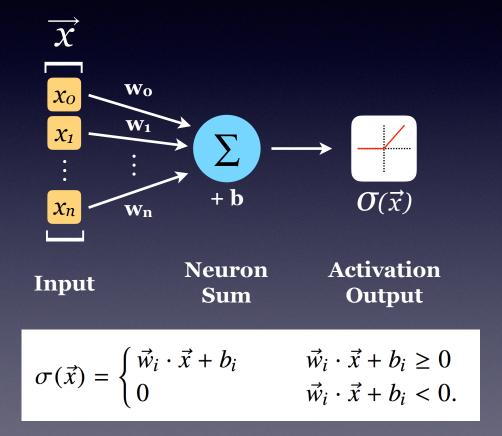
Convolutional Neural Network ~ How does it work? ~

How a Simple Perceptron Works

Background: Neural Net

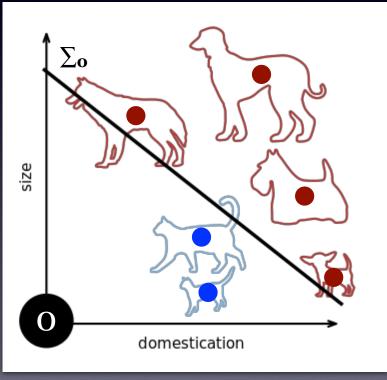
The basic unit of a neural net is the *perceptron* (loosely based on a real neuron)

Takes in a vector of inputs (*x*). Commonly inputs are summed with weights (*w*) and offset (*b*) then run through activation.



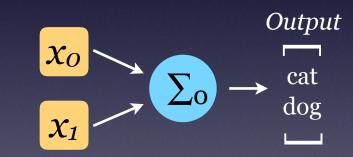
How a Simple Perceptron Works Perceptron 2D Classification

Imagine using two features to separate cats and dogs

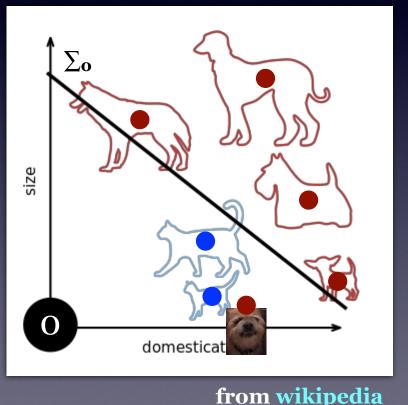


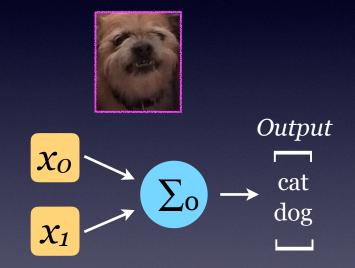
from wikipedia

$$\sigma(\vec{x}) = \begin{cases} \vec{w}_i \cdot \vec{x} + b_i & \vec{w}_i \cdot \vec{x} + b_i \ge 0\\ 0 & \vec{w}_i \cdot \vec{x} + b_i < 0. \end{cases}$$

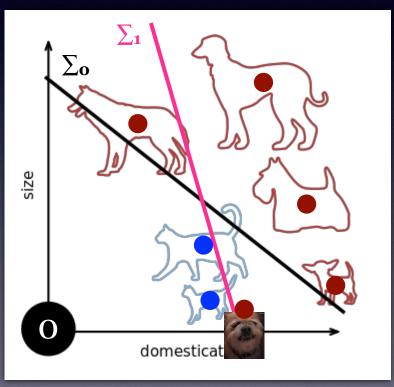


By picking a value for w and b, we define a boundary between the two sets of data How a Simple Perceptron Works Perceptron 2D Classification Maybe we need to do better: assume a new data point (small but not as well behaved)



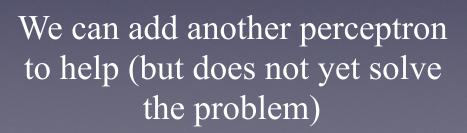


How a Simple Perceptron Works Perceptron 2D Classification Maybe we need to do better: assume a new data point (small but not as well behaved)



from wikipedia

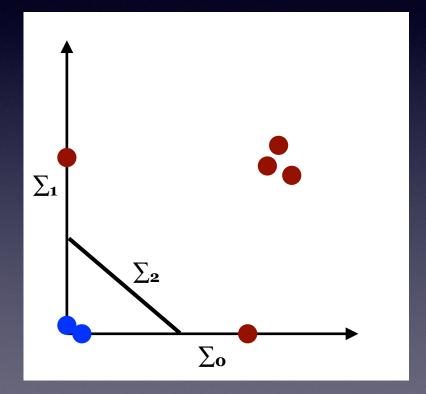
 \sum_{1}

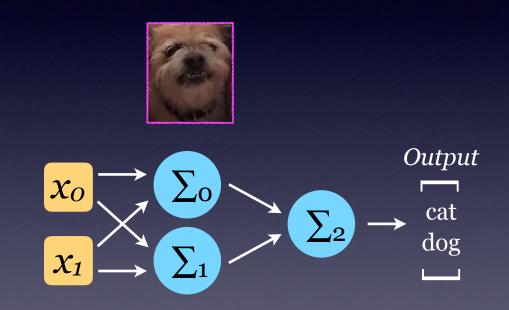


 X_O

 χ_1

How a Simple Perceptron Works Perceptron 2D Classification Maybe we need to do better: assume a new data point (small but not as well behaved)

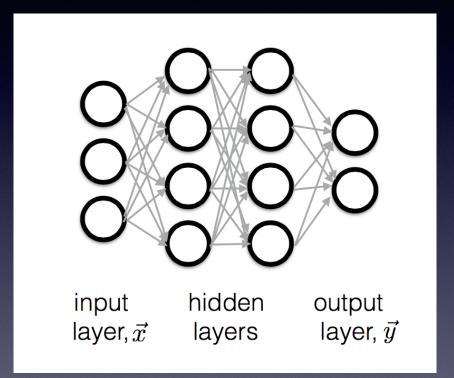




Another layer can classify based on preceding feature layer output

"Classical" Neural Net

Fully-Connected, Feed-forward, Multi-Layer Perceptrons



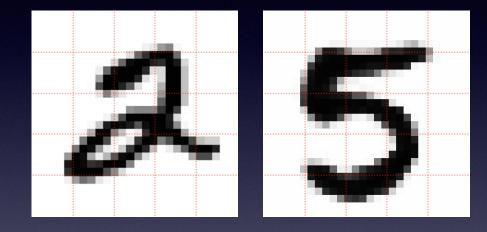
A traditional neural network consists of a stack of layers of such neurons where each neuron is *fully connected* to other neurons of the neighbor layers

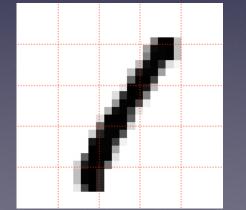
"Classical" Neural Net

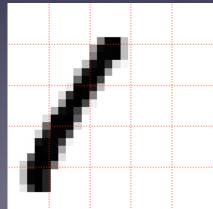
... is not ideal for image classification ...

Image classification

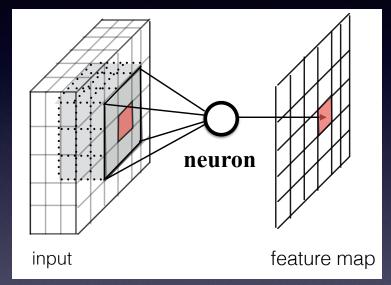
What is input neurons?
Every pixel value
How many weights?
of pixels in an image!
Fully connected?
translation variant!







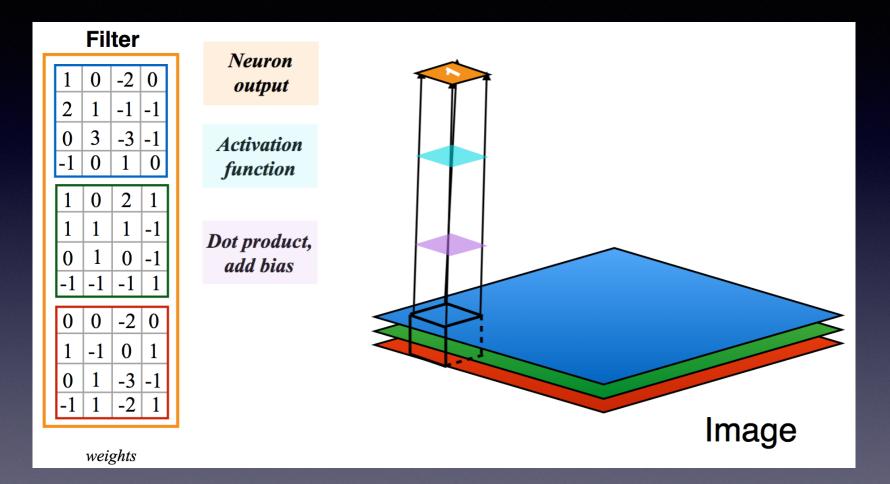
CNN introduce a *limitation* by forcing the network to look at only local, translation invariant features



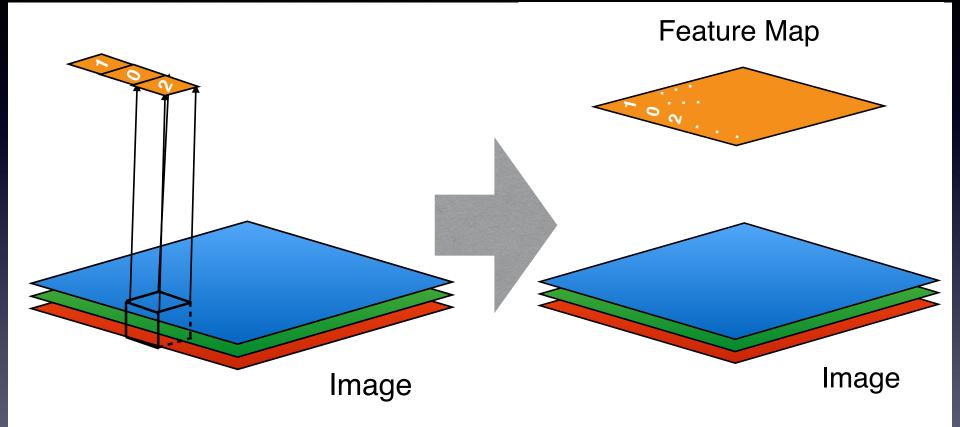
$$f_{i,j}(X) = \sigma \left(W_i \cdot X_j + b_i \right),$$

Activation of a neuron depends on the element-wise product of 3D weight tensor with 3D input data and a bias term

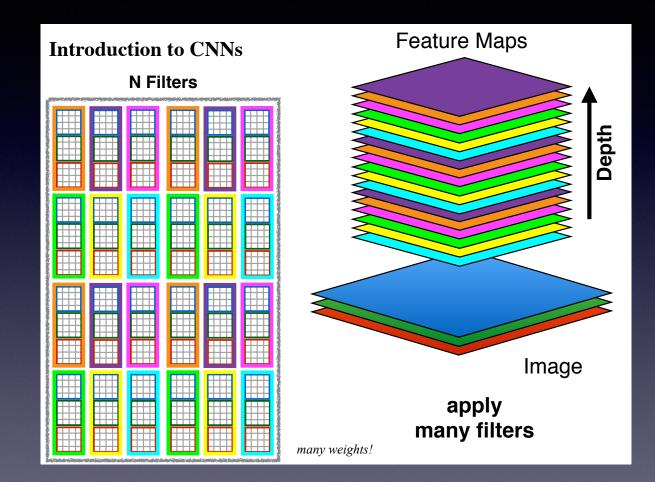
- Translate over 2D space to process the whole input
- Neuron learns translation-invariant features
 - Suited for a "*homogeneous*" detector like LArTPC
- **Output**: a "feature-enhanced" image (*feature map*)



Toy visualization of the CNN operation



Toy visualization of the CNN operation



Toy visualization of the CNN operation

How Image Classification Networks Work

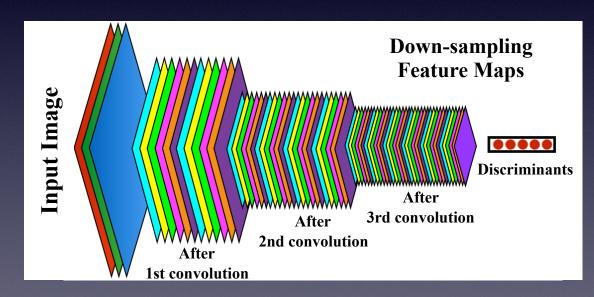
Feature map visualization example

<u>https://www.youtube.com/watch?v=AgkfIQ4IGaM</u>

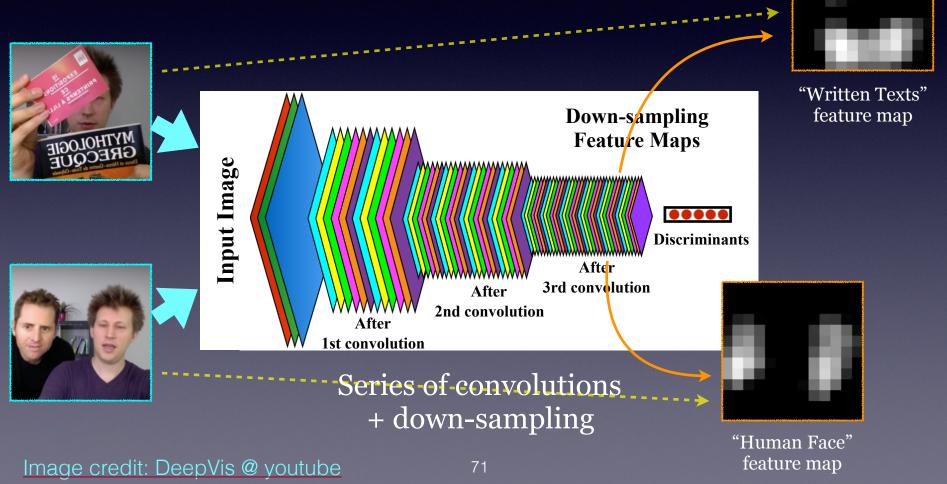
Neuron concerning face

Neuron loving texts (and don't care about your face)

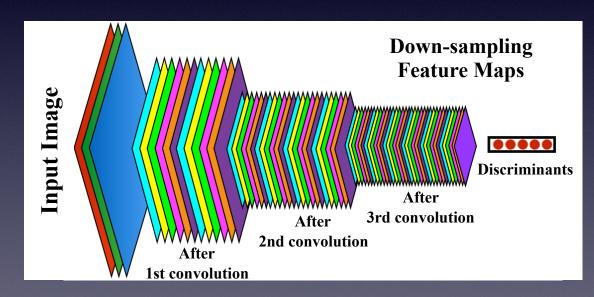
How Image Classification Networks Work Goal: extract features to give "single label" to an image 1. Convolution operation 2. Down-sampling



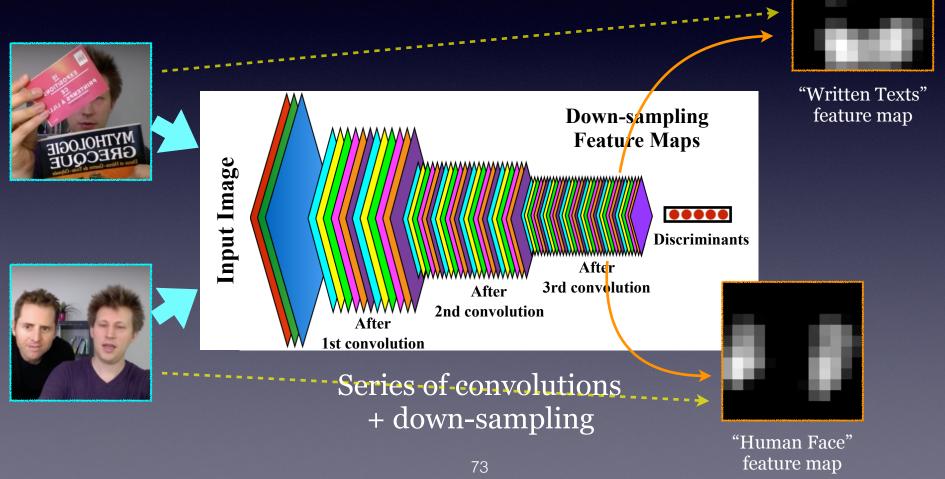
Series of convolutions + down-sampling How Image Classification Networks Work Goal: extract features to give "single label" to an image 1. Convolution operation 2. Down-sampling



How Image Classification Networks Work Goal: extract features to give "single label" to an image 1. Convolution operation 2. Down-sampling



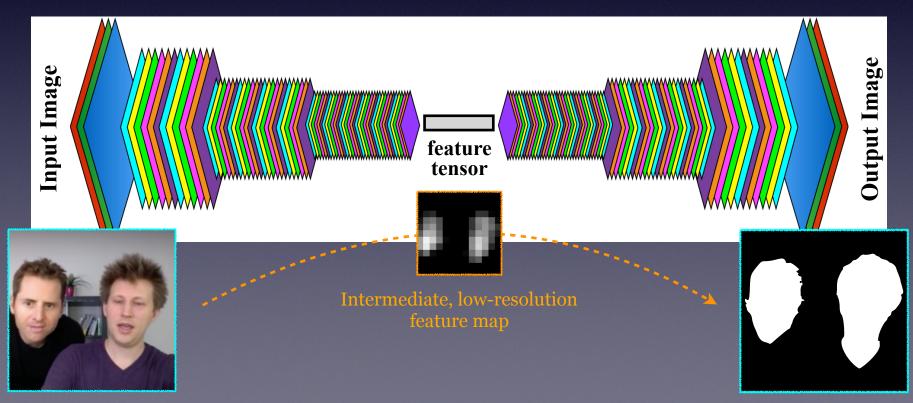
Series of convolutions + down-sampling How Image Classification Networks Work Goal: extract features to give "single label" to an image 1. Convolution operation 2. Down-sampling



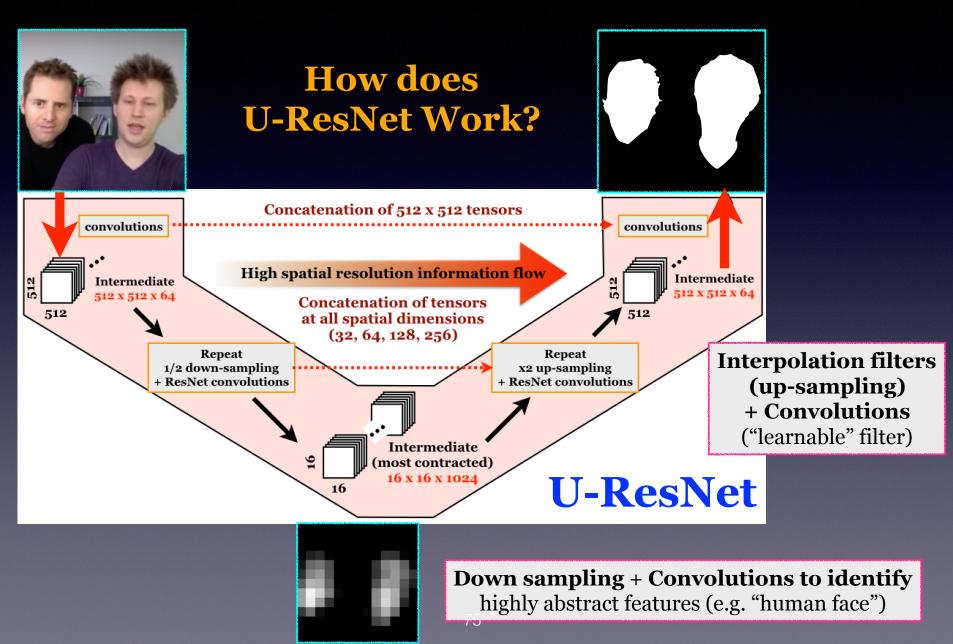
How SSNet Works

Goal: recover precise, pixel-level location of objects

- 1. Up-sampling
 - Expand spatial dimensions of feature maps
- 2. Convolution
 - Smoothing (interpolation) of up-sampled feature maps



DNN for LArTPC Data Reconstruction



Validation with real data

Benchmarking SSNet w/ Real Data

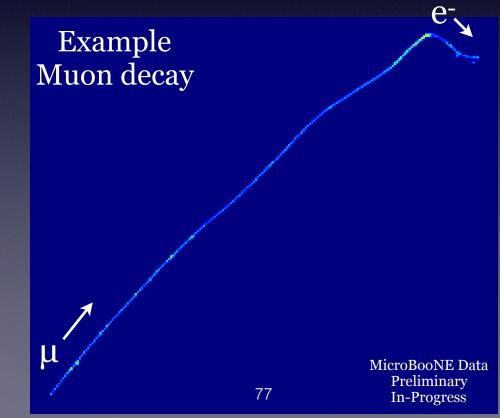
Samples (100 images per sample per sim/data)

A cosmic ray muon decay

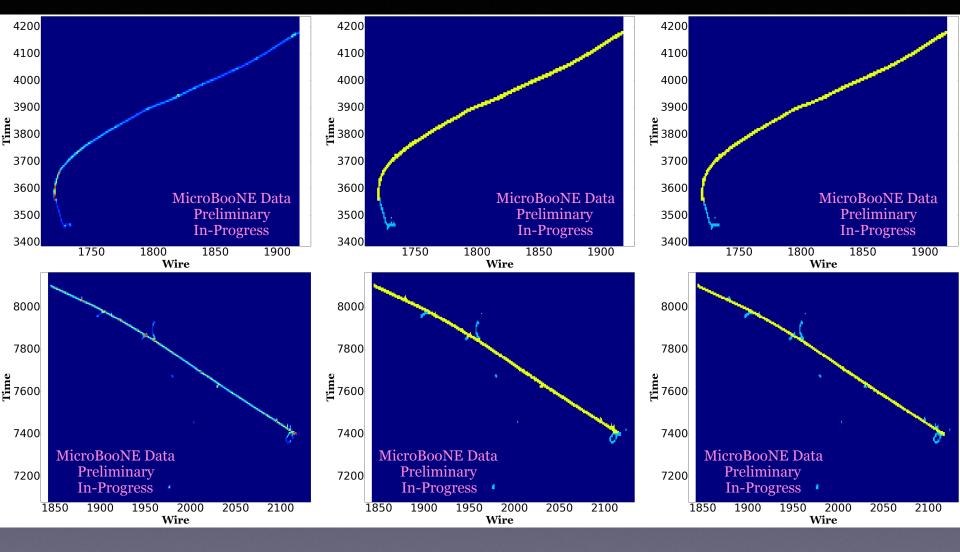
- Involves both "track" and "shower", simple and intuitive.

Neutrino interactions

- More complicated: varying particle types and multiplicity



Decay Muons: Example Displays

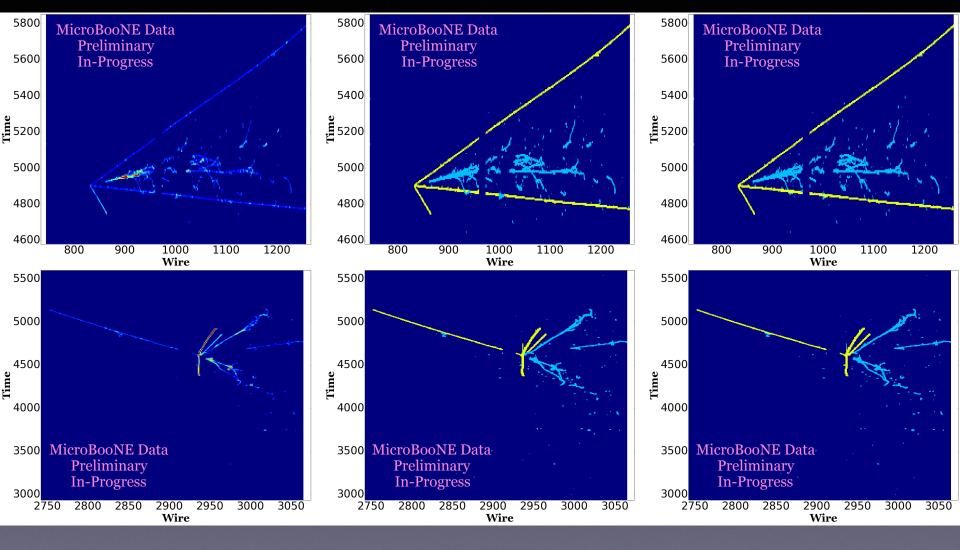


Input Image

Human Label

SSNet Label

4 Visually Picked "Busy Neutrino Events"



Input Image

Human Label

SSNet Label

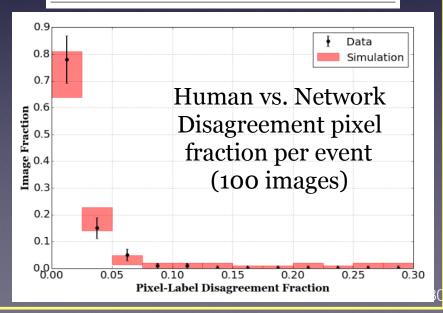
Overall Performance

• Data/Simulation agreement within statistical error - No systematic error included

• Network does better than a human analyzer (sim.)

Disagreement rate mean/std in % Sample Data Simulation Simulation Label Physicist Simulation Simulation Physicist Prediction **U-Resnet U-ResNet** U-ResNet Physicist ICPF mean 1.8 2.62.52.3ICPF 90% 3.34.44.53.1Shower 6.25.74.03.91.1 Track 1.9 1.61.3

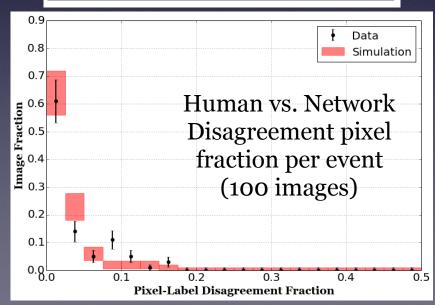
Muon Decay



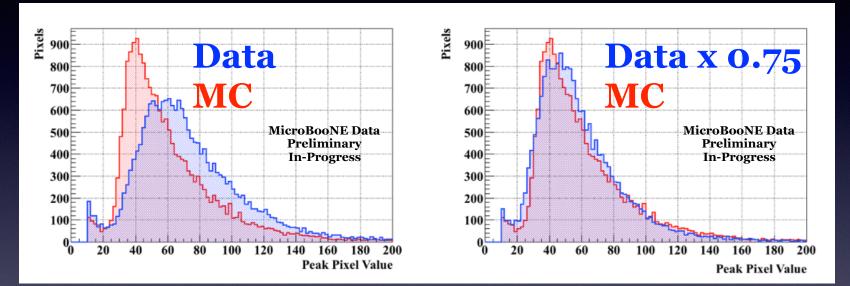
Neutrino w/ Gamma

Disagreement rate mean/std in %

Sample	Data	Simulation	Simulation	Simulation							
Label	Physicist	0	Simulation								
Prediction	U-ResNet	U-ResNet	U-ResNet	Physicist							
ICPF mean	3.4	2.5	1.8	2.0							
ICPF 90%	9.0	5.7	4.6	4.8							
Shower	4.8	3.4	3.0	2.6							
Track	2.7	2.4	2.2	2.9							



Decay Muons: Pixel Value Variation Studied how network performance varies when pixel values are scaled by a constant factor

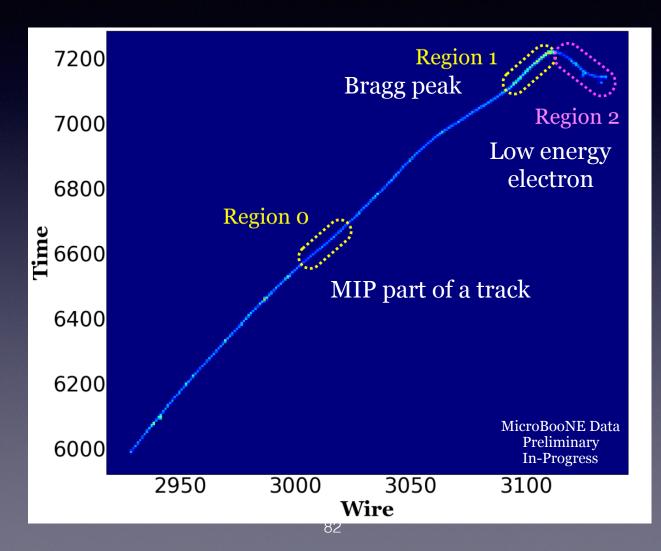


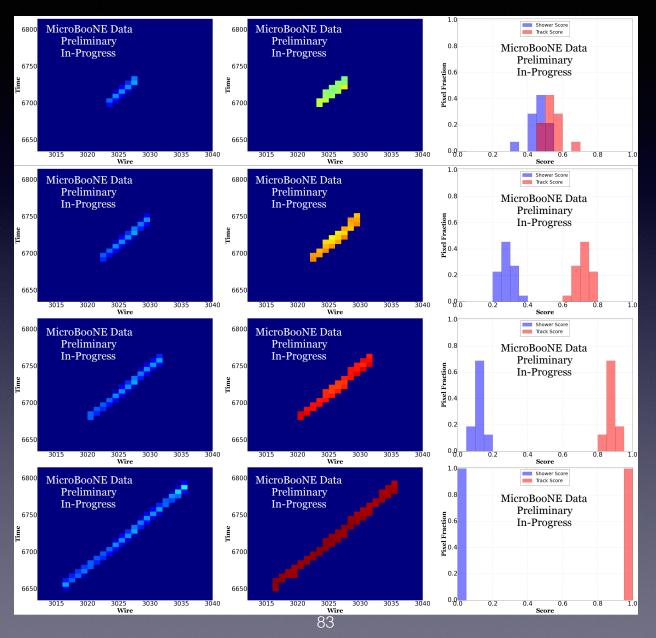
No scaling

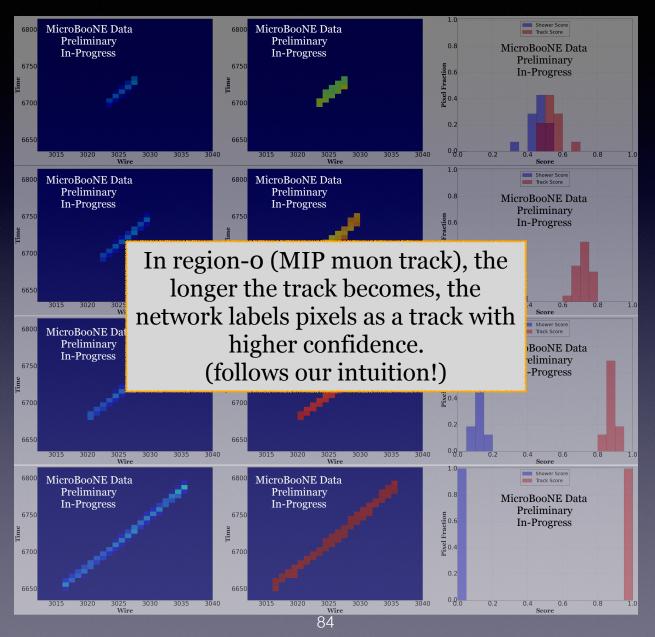
Scaling Factor	0.75	0.80	0.85	0.90	0.95	1.00	1.05	1.10	1.15	1.20	1.25
Track	2.38	2.11	1.93	1.65	1.40	1.14	1.16	1.20	1.26	1.28	1.32
Shower	5.24	5.22	5.41	6.02	6.11	6.16	6.11	6.14	6.21	6.28	6.34
Combined	2.75	2.53	2.40	2.21	2.02	1.81	1.85	1.89	1.96	2.00	2.04

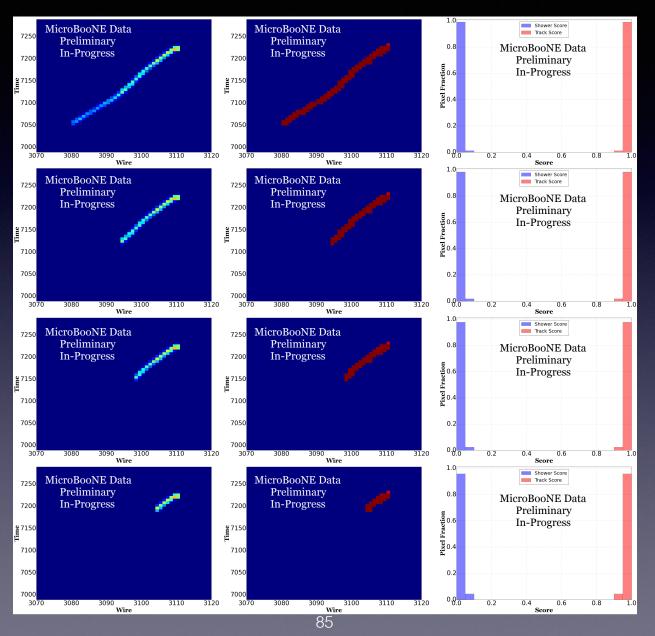
Change in the mean error rate is within 1% when pixel values are scaled within 20%, fairly robust

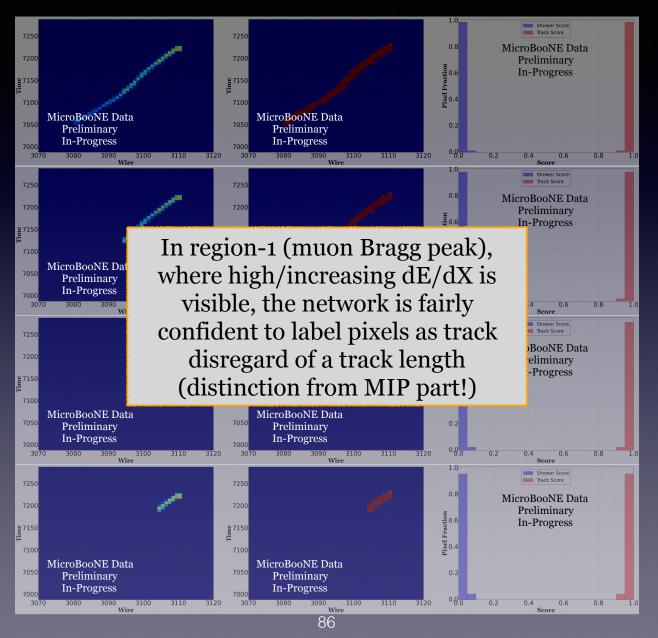
Decay Muons: Inter-Pixel Correlation Study, qualitatively, how network reacts to interesting portions of an image

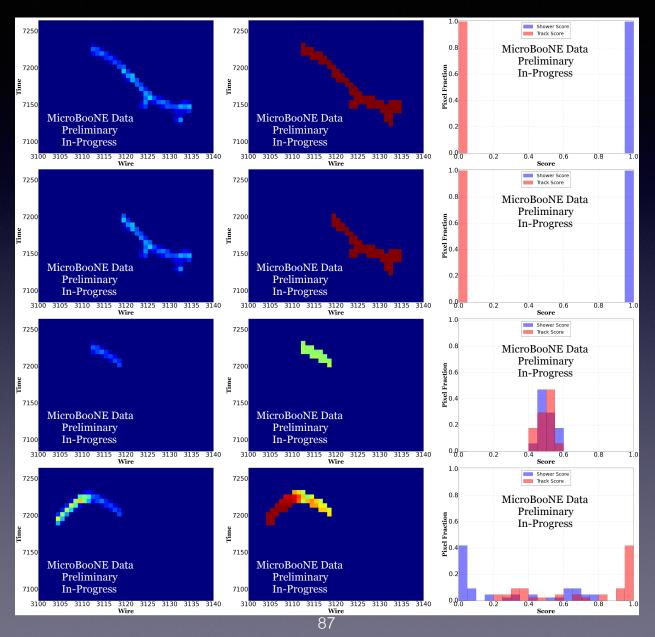


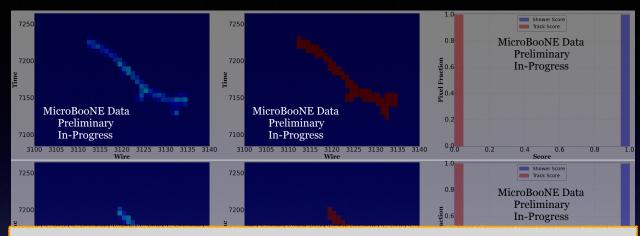




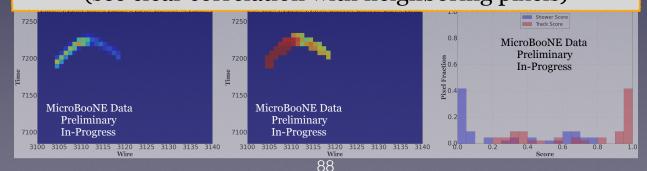




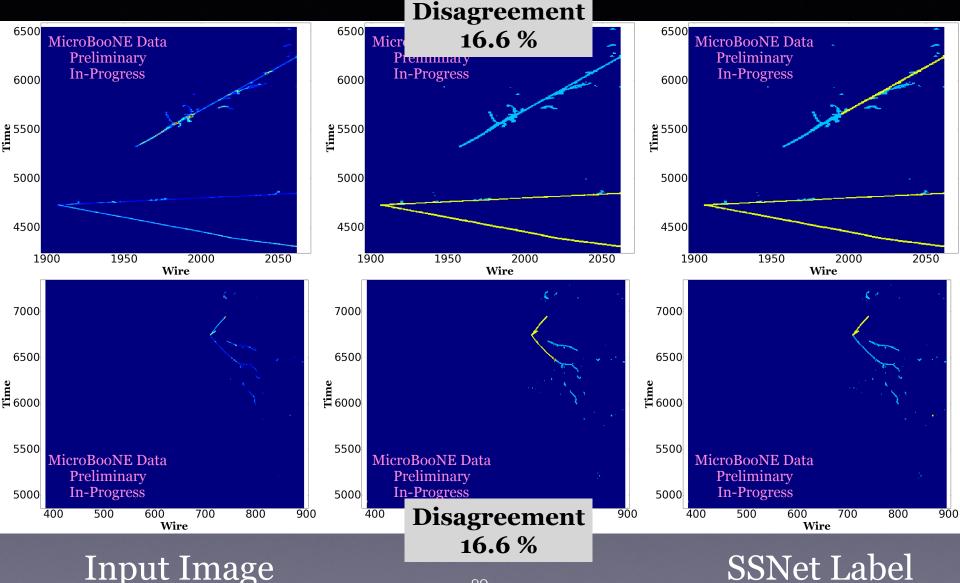




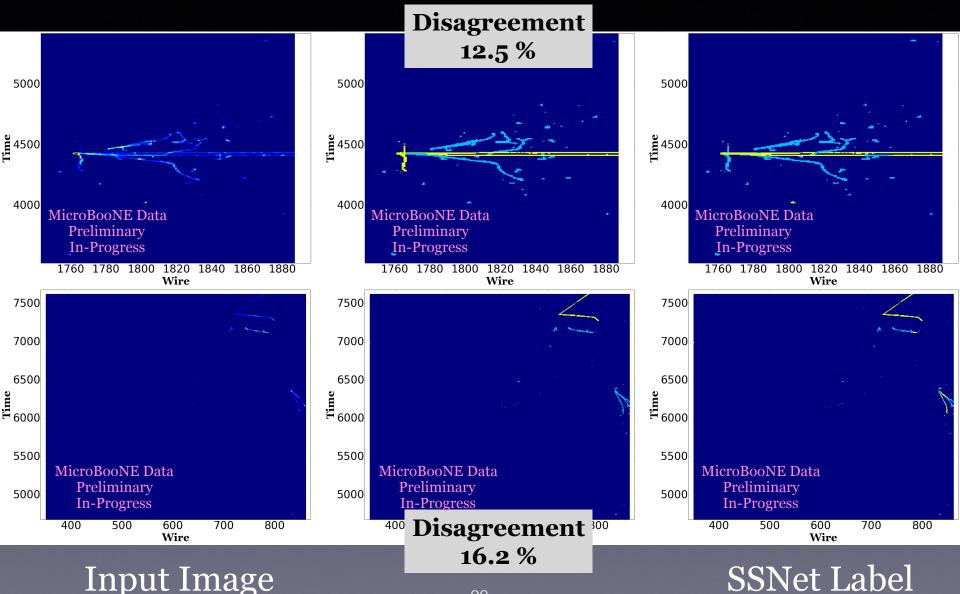
In region-2 (Michel electron), the network is almost zeroconfidence when given a straight MIP-like electron trajectory. However when connected with wabbling shower-like component, the straight trajectory part is classified with high confidence as a shower. When connected with Bragg peak, it has a slight preference toward predicting a straight electron track as a shower. (see clear correlation with neighboring pixels)



Neutrino w/ Gammas: 4 Worst Events



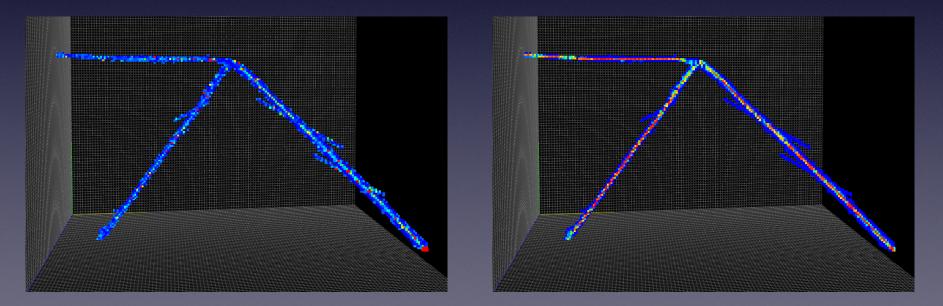
Neutrino w/ Gammas: 4 Worst Events



3D Data Reconstruction @ SLAC

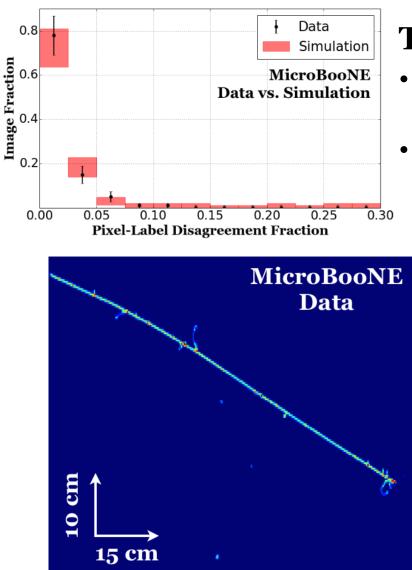
Tracy Usher

• Showing ML can be started above age of 60



Tracy shows you can start ML above age of 60

Progress Report Machine Learning & Data Reconstruction

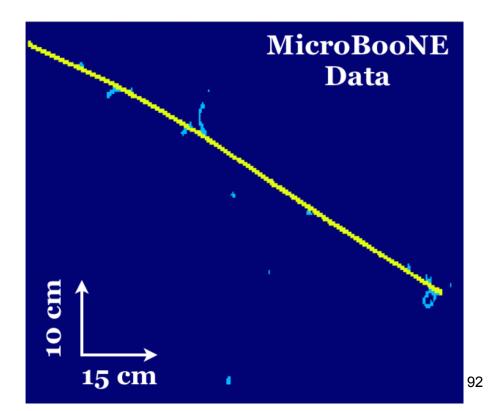


Technique Validation on Data

- Same paper ... <u>arXiv:1808.07269</u>
 - Important for new techniques such as this

SLAC

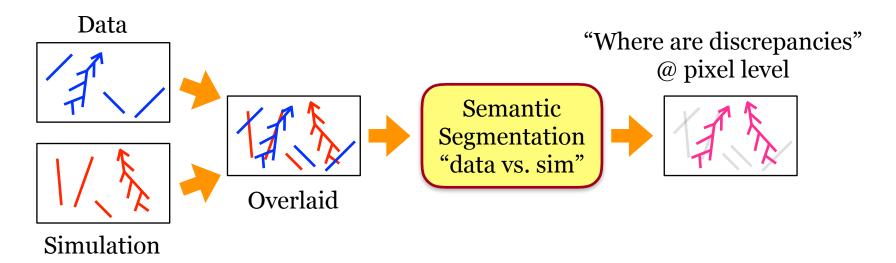
Compared physicist vs. network predictions



What can we do about imperfect simulation?

- **Problematic**: the "signal distribution" learnt by the algorithm may be different in two domains!
- Mitigation techniques in ML domain?

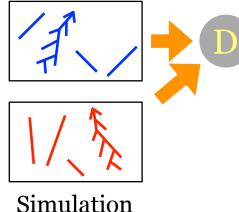
- Can try CNN to "locate" where it is



What can we do about imperfect simulation?

- **Problematic**: the "signal distribution" learnt by the algorithm may be different in two domains!
- Mitigation techniques in ML domain?
 - Can try CNN to "locate" where it is
 - **Can** try CNN to "fix" the discrepancy

Data

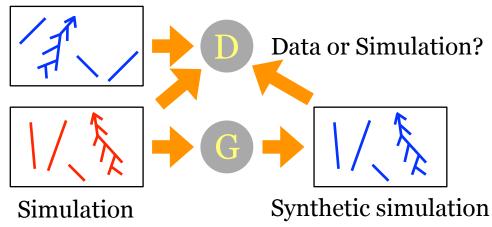


Data or Simulation?

What can we do about imperfect simulation?

- **Problematic**: the "signal distribution" learnt by the algorithm may be different in two domains!
- Mitigation techniques in ML domain?
 - Can try CNN to "locate" where it is
 - Can try CNN to "fix" the discrepancy

Data

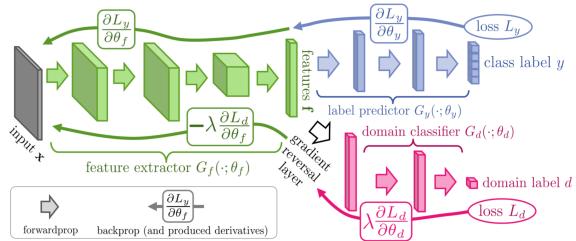


Generative Adversarial Network

Can learn the "mapping" between the data and simulation "distributions". The generator network can be used as a synthetic image generator to train different neural networks

What can we do about imperfect simulation?

- **Problematic**: the "signal distribution" learnt by the algorithm may be different in two domains!
- Mitigation techniques in ML domain?
 - Can try CNN to "locate" where it is
 - Can try CNN to "fix" the discrepancy
 - Can try a training technique to minimize the effect



Maximize the loss for discriminate data vs. simulation, feature extractors are penalized to key on simulation specific information

Minerva Paper arXiv:1808.08332

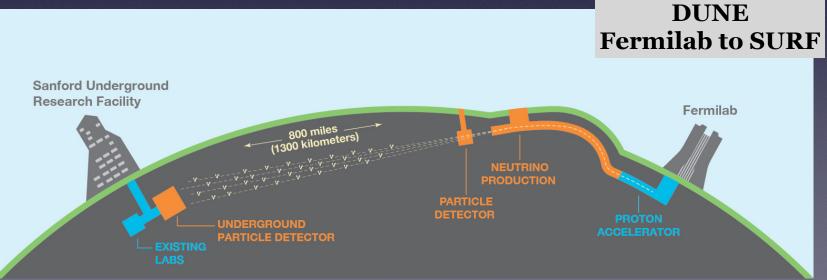
Domain-Adversarial Training of Neural Networks J. Mach. Learn. Res. 17 (2016) 96

LArTPC Experiments

Accelerator-based oscillation experiments

DUNE: long baseline program (first beam expected @ 2026)

- Measure mass hierarchy and CP violation $(v_{\mu} \rightarrow v_e vs. \overline{v}_{\mu} \rightarrow \overline{v}_e)$
- Rare physics processes (proton decay, n-n, Supernova neutrinos)



LArTPC Experiments

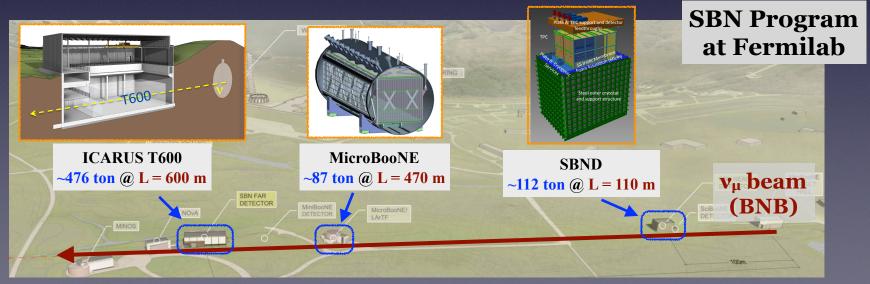
Accelerator-based oscillation experiments

DUNE: long baseline program (first beam expected @ 2026)

- Measure mass hierarchy and CP violation $(v_{\mu} \rightarrow v_e \text{ vs. } \overline{v}_{\mu} \rightarrow \overline{v}_e)$
- Rare physics processes (proton decay, n-n, Supernova neutrinos)

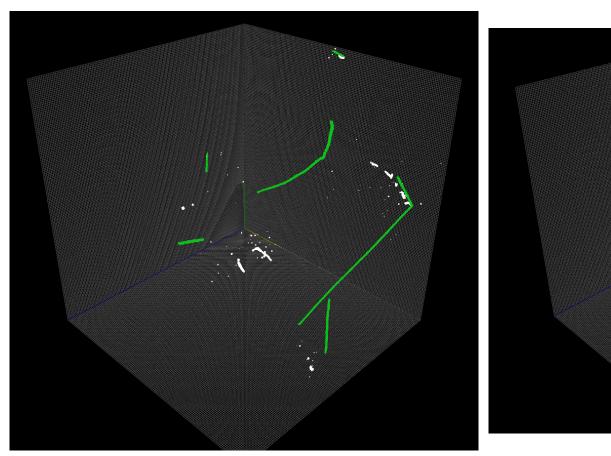
SBN: short baseline program (2015 ~)

- Measure $v_{\mu} \rightarrow v_e$ to investigate possible sterile neutrino oscillation
- Employs three LArTPC detectors at different baselines
- LArTPC R&D for DUNE



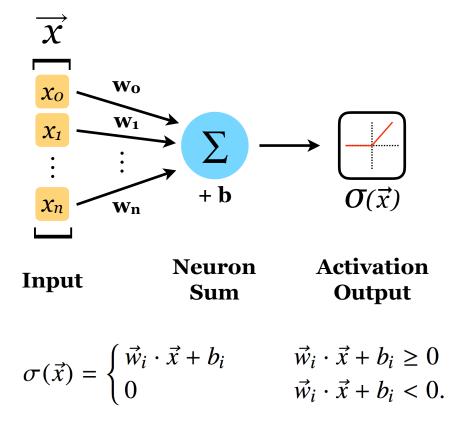
Scalability Solution for Sparse Data Machine Learning for LArTPC Image Analysis

Clustering ... on-going work (Left: track/shower separation output) (Right: track pixel clustering using graph NN)

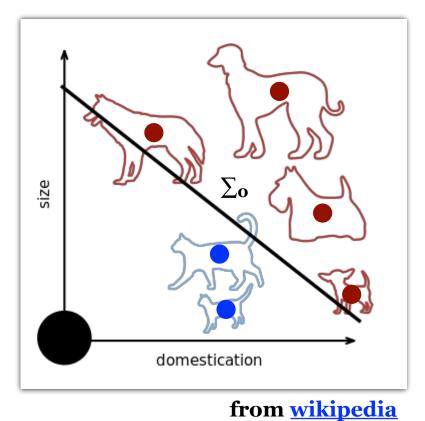


The basic unit of a neural net is the *perceptron* (loosely based on a real neuron)

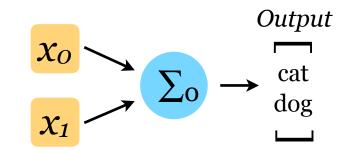
Takes in a vector of inputs (*x*). Commonly inputs are summed with weights (*w*) and offset (*b*) then run through activation.



Imagine using two features to separate cats and dogs

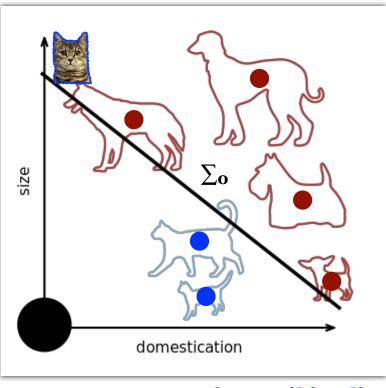


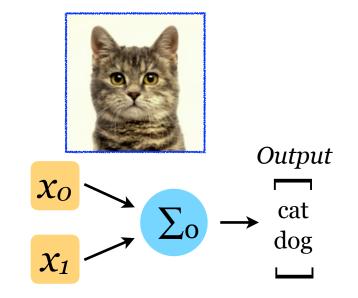
$$\sigma(\vec{x}) = \begin{cases} \vec{w}_i \cdot \vec{x} + b_i & \vec{w}_i \cdot \vec{x} + b_i \ge 0\\ 0 & \vec{w}_i \cdot \vec{x} + b_i < 0. \end{cases}$$



By picking a value for **w** and **b**, we define a boundary between the two sets of data

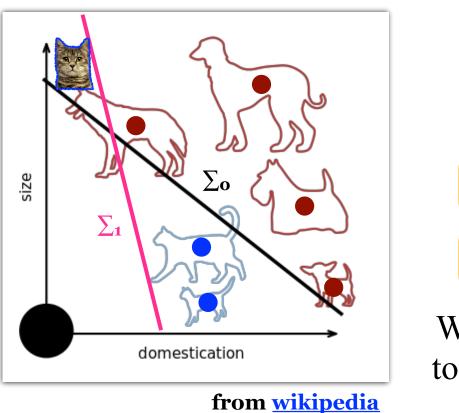
What if we have a new data point?

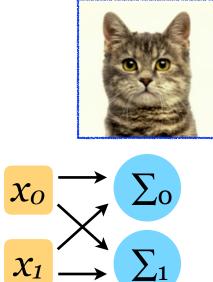




from wikipedia

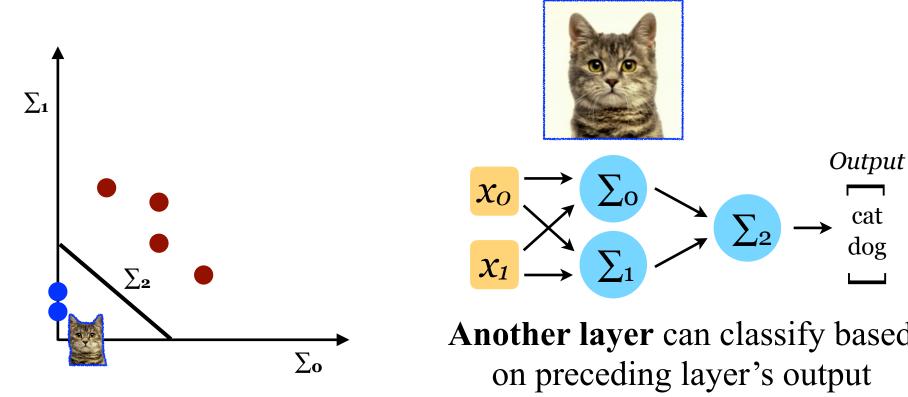
What if we have a new data point?





We can **add another perceptron** to help (but does not yet solve the problem)

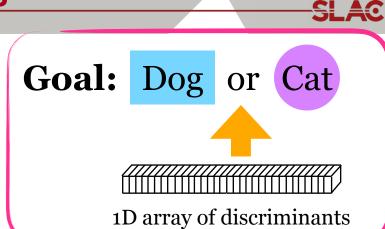
What if we have a new data point?



from wikipedia

Another layer can classify based on preceding layer's output (of non-linear activation)

Machine Learning Overview Back to analyzing a cat "image..."



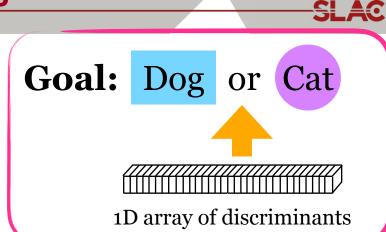
This part can be done with a classic (fullyconnected) neural network

How can we extract "features" from "image"?

HOW!

... the hard part ... (where I have failed for long)

Machine Learning Overview Back to analyzing a cat "image..."

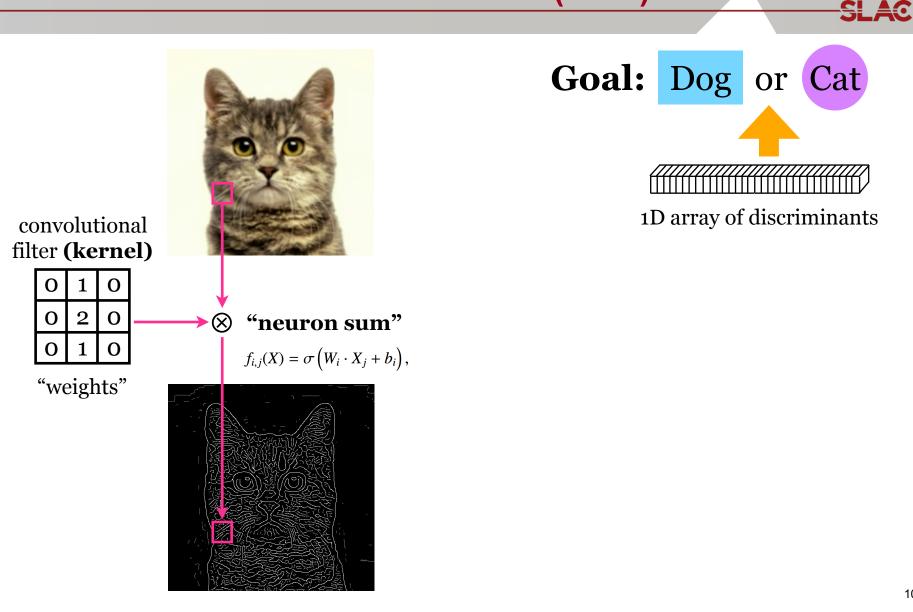


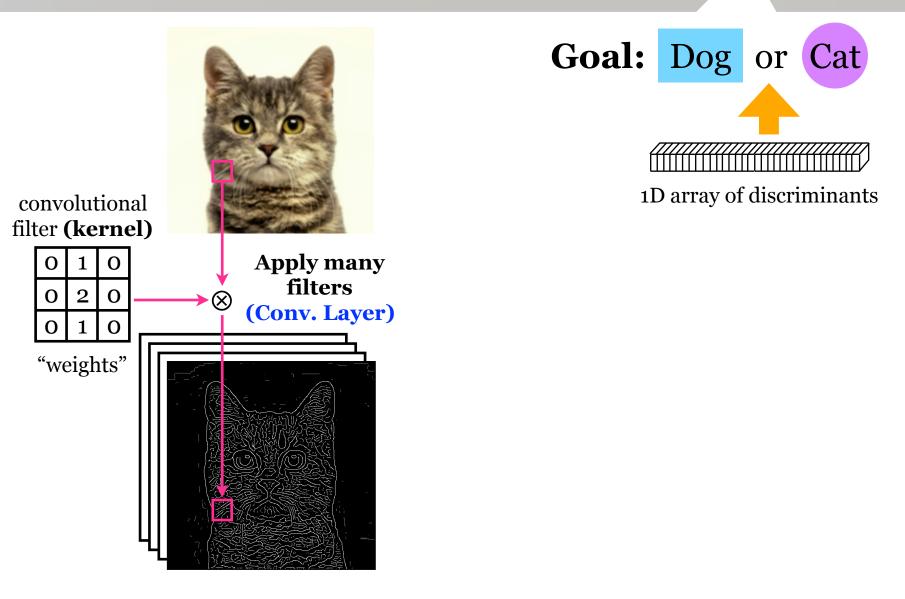
This part can be done with a classic (fullyconnected) neural network

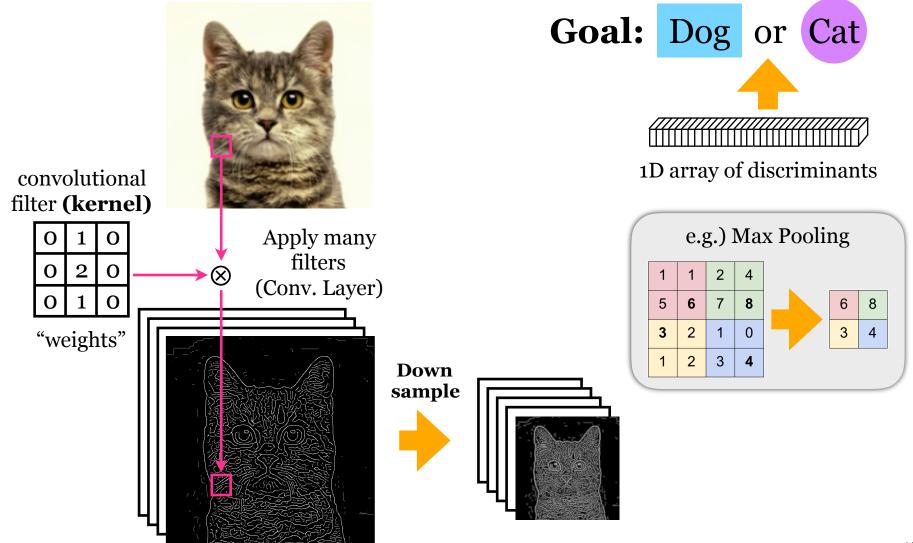
How can we extract "features" from "image"?

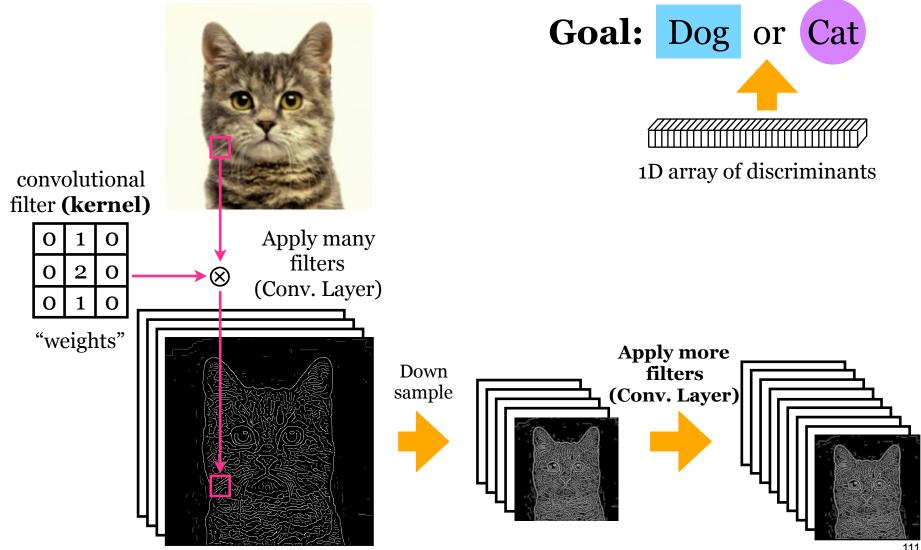
HOW

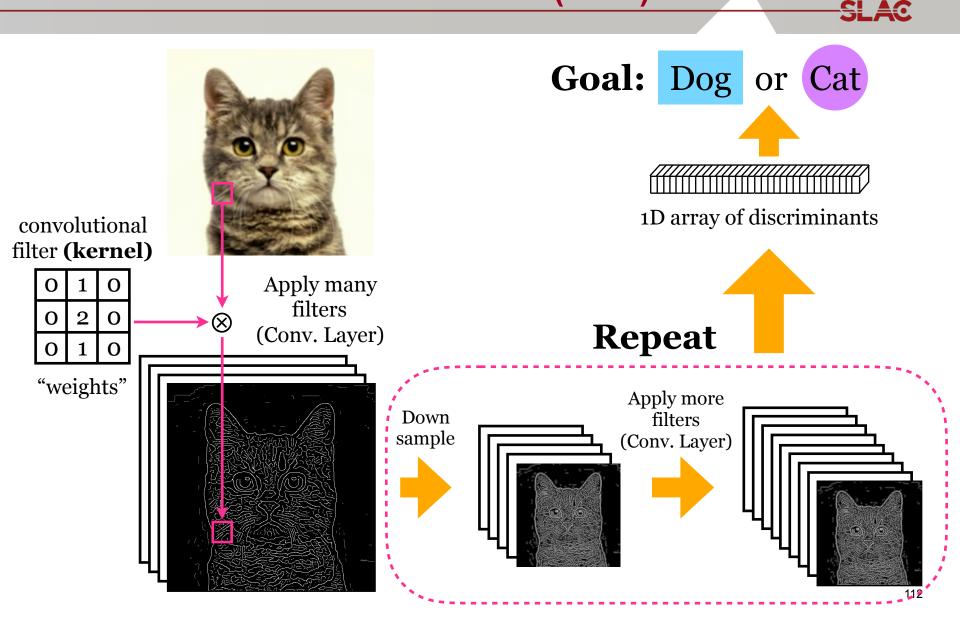
Convolutional Neural Network



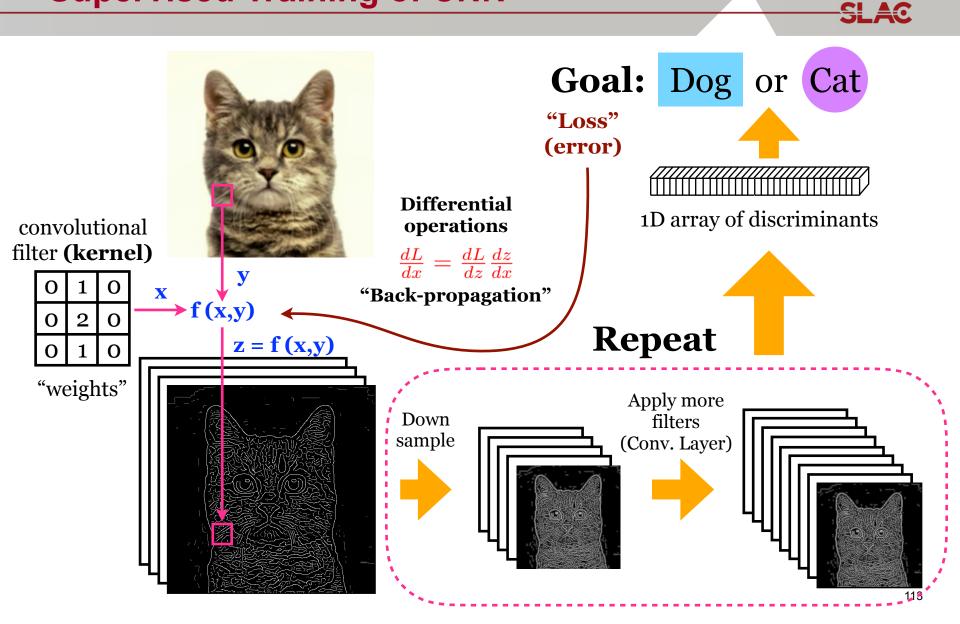








Machine Learning Overview Supervised Training of CNN



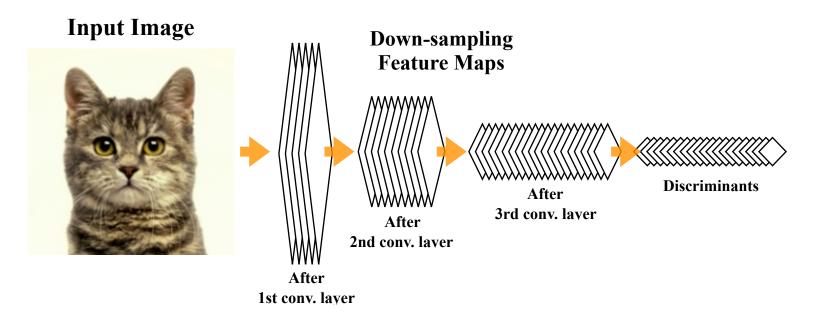
Machine Learning Overview Summarizing CNNs

SLAC

CNNs are "feature extraction machine"

- Consists of "convolution layers" with "kernels"
- A chain of linear algebra operations = "massively parallel"
 - Suited for acceleration using many-core hardwares (e.g. GPUs)

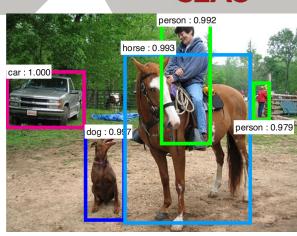
• CNN: data ⇔ distribution "Mapping" (transformation)



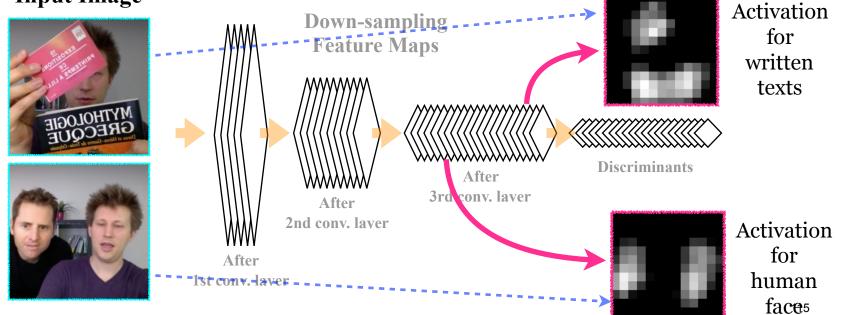
Machine Learning Overview Beyond image classification: object detection

Object Detection

- Train CNN to regress "object location & size"
- "sliding windows" to find "regions of interest"
 - With spatially contracted, feature-enhanced data, detection is much faster!



Input Image



Machine Learning Overview Beyond image classification: pixel segmentation

