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LArTPC Data Reconstruction

uBooNQ%

Particle imaging
= visually intuitive

Run 3493 Event 41075, October 23"¢, 2015
75 cm

2



LArTPC Data Reconstruction
uBO(ﬁ\%

e Interaction vertex

e Particle clustering
- “line” vs. “shower”
- Track fitting

« Particle type ID
« Particle energy/momentum
 Neutrino flavour & energy

~Reconstruction = Physical Feature Extraction

Run 3493 Event 41075, October 23"¢, 2015
75 cm
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LArTPC Data Reconstruction




Machine Learning
and Computer Vision
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Machine Learning
Challenge in Computer Vision

>
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How to write an algorithm
to 1dentify a cat?

Very hard task ..

67 15 83 09 40 19 40 11 31 35 60 43 66 14 48 08 60 13
77 23 22 74 09 90 36 12 29 39 78 31 71 73 22 50 92 35
48 72 85 27 79 08 41 31 09 53 05 40 04 31 91 56 26 85
43 54 21 33 81 30 72 06 79 34 39 59 70 03 24 91 03 40
10 25 54 71 24 50 87 88 47 68 31 42 09 77 40 07 26 73
38 73 50 47 22 21 88 78 02 95 19 59 60 93 73 40 67 99
67 38 55 51 26 81 43 66 89 69 92 94 50 08 94 63 33 66
38 46 63 07 66 68 41 49 34 33 66 76 68 97 53 18 72 21
86 66 06 68 13 01 89 00 80 70 21 27 14 90 80 95 31 68
93 88 02 97 92 41 21 54 24 33 97 10 33 47 24 08 12 76
62 42 88 15 02 57 20 43 09 71 54 73 29 57 23 81 99 41
57 02 84 20 31 97 41 73 19 29 17 28 99 16 23 19 53 53
34 86 46 18 95 65 62 28 62 95 35 84 18 22 81 45 10 12
34 46 77 60 28 62 16 61 72 19 88 14 43 23 64 43 35 00
68 89 13 74 48 90 12 59 02 31 14 34 77 47 04 69 99 66
05 77 88 20 63 57 41 50 68 04 30 62 09 67 61 86 31 43
07 95 11 52 04 91 58 59 30 09 46 95 31 71 43 26 48 19
86 71 64 31 49 99 60 63 97 61 43 86 36 53 82 31 00 52
18 10 79 39 77 28 39 17 76 81 93 35 02 78 10 30 35 75
71 85 86 24 93 75 35 70 30 16 07 35 08 61 82 85 95 22

Image credits: TED talk by Fei-Fei Li



Machine Learning
Challenge in Computer Vision

o1 A

P iy TN

Development Workflow for non-ML algorithms

1. Write an algorithm based on basic (physics) principles

A collection of

cat =

(or, a neutrino)

certain shapes

7
Image credits: TED talk by Fei-Fei Li



Machine Learning
Challenge in Computer Vision

o1 A

P iy TN

Development Workflow for non-ML algorithms

2. Run on simulation/data samples

3. Observe failures, implement fixes/heuristics

4. Iterate over 2 & 3 till a satisfactory level is achieved

5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Stretching cat
(Nuclear FSI)

$

collection of
certain shapes

Partial cat
(escaping muon)

A cat =

(or, a neutrino)

8
Image credits: TED talk by Fei-Fei Li




Machine Learning
Challenge in Computer Vision

o1 A

Machine Learning

- Learn patterns from data
- automation of steps 2, 3, and 4

« Chain algorithms & optimize
- step 5 addressed by design

* “Deep Learning”
- Revolutions in computer vision using deep

neural networks

P iy (WA

Natural
Neural
Network



Machine Learning
Revolution with Deep Neural Networks

el AL
LS | = g \ 2

2012 Public image categorization
competition \V% / 1.oM images, ImageNet Classification with Deep Convolutional
. . Neural Networks
1000 object categories.

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
I M .f’i E kriz@cs.utoronto.ca ilya@cs.utoronto.ca hinton@cs.utoronto.ca

> 30,000
Abstract ° °
“Deep,, convolutional We trained a large, deep convolutional neural network Im;t\angns

high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%

neural network brOke the and 17.0% which is considerably better than the previous state-of-the-art. The

. neural network, which has 60 million parameters and 650,000 neurons, consists

past record by a large margln of five convolutional layers, some of which are followed by max-pooling layers,

and three fully-connected layers with a final 1000-way softmax. To make train-

ing faster, we used non-saturating neurons and a very efficient GPU implemen-

tation of the convolution operation. To reduce overfitting in the fully-connected

layers we employed a recently-developed regularization method called “dropout™

Al ex N et that proved to be very effective. We also entered a variant of this model in the

ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

mite container ship motor scooter
mite container ship motér scooter
black widow lifeboat go-kart
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

starfish drilling platform golfcart Egyptian cat




Machine Learning
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Machine Learning
Evolution of DNN: Beyond Image Classifications_ -

P iy TN

Interpretation of Contexts’ Correlation

1.12 woman
-0.28 in
LR | 23 white
1.45 dress
0.06 standing
-0.13 with
3.58 tennis
1.81 racket

0.06 two
0.05 people
-0.14 in
: 0.30 green
ithub:karathriii‘ﬁgﬁg -0.09 behind
-0.14 her

"girl in pink dress is jumping in

alr.

12


https://github.com/karpathy/neuraltalk2
https://arxiv.org/pdf/1703.06870.pdf

Machine Learning
... for LArTPC Image Analysis

o1 A

Dl AN

DNN is an efficient data transformation technique. “Image
classification” transforms visually intuitive 2D/3D data into an
array of discriminants (classes).

> > “ve”

1 p 4

if e
o —
Ny -

P i

Input Data

13



Machine Learning
. for LArTPC Data Reconstruction

Multi-task Deep Neural Network

Introduce physical feature extraction tasks (reconstruction) to
bias the data transformation. Implicitly introduce physics
concepts + construct logic for the final output.

o000
TAWAWAWAN
XX XX

ngh level
Paricle g Output

Clustering -

Input Data

Outputs from the
individual networks

14



Machine Learning
... for LArTPC Data Reconstruction

o1 AL
Dk

ML-based Full Data Reconstruction Chain

e A cluster of many task-specific networks in 2D & 3D
- Vertex finding, clustering, particle ID, etc.

i O 1. Space point (track edges) + pixel feature annotation
O 2. Vertex finding + particle clustering

O 3. Particle type + energy/momentum

O 4. Hierarchy building




Machine Learning in Computer
High-Precision
< Detector Data Analysis

Image Credit *
Fermilab Today

http://news.tnal.gov/2018/03/when-it-rains-2



http://news.fnal.gov/2018/03/when-it-rains-2/

Early Demonstrations
Machine Learning for LArTPC Image Analysis

L Tt M ML Technique
A \ @ MicroBooNE
- - LArTPC Detector
. Image Classification L T o |
’j‘____l__; f = « Classify a whole image into object categories )

el Y « particle type identification from an image
« signal/background selection

JINST 12 P0o3011 (2017)
arXiv:1611.05531 °

, "~ Object detection
- MicroBooNE KR Py neutrino interaction
Simulation + Data Overlay . vertex localization


http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531

Early Demonstrations
Machine Learning for LArTPC Image Analysis

Semantic Segmentation ML Technique
 Recently published ... arXiv:1808.07269 @ MicroBooNE
« Pixel-level object classification LArTPC Detector

- Separation of EM-particle from other types
- Key input information for particle clustering
« First time deep neural network Validated on LArTPC data

30 cm 30 cm

| /,. Real Data Image | / Network Output |

J \\
/

\ r N
\ / \\\ P ’
\ a 4
\ ” //// - \
\ \ . /
X )
. cosmic /

BOO s COSII]IC--’.‘ . P o
e -
11 1 i
BNB Data : Run 5419 Event 6573 March 14th, 2016 BNB Data : Run 5419 Event 6573 March 14th, 2016

Network Input Network Output =



https://arxiv.org/abs/1808.07269

Toward Full 3D Reconstruction Chain
Machine Learning for Particle Image Analysis

Laura Domine (GS)s

Multi-Task Network Cascade Presented @ Neutrino2018
Competition,top-10 finalist!

e Chain of Segmentation + Detection

- Feature points: “shower start” and “track edges”
- Classify each pixel into “shower” vs. “ track”

e Extension to 3D data
- Change in tensor dimensions, identical algorithms

24cm

0 1 2 3 4 5
Pixel distance between the target truth
point to the closest proposed point1 ° 19




Toward Full 3D Reconstruction Chain
Machine Learning for Particle Image Analysis

“Applying for 3D” is simple, but is it scalable?
« LArTPC data is generally sparse but locally dense
- Mostly zero-filled matrix. CNN = dense matrix operation = bad!

- Matrix size (volume) scales by power low, but non-zero pixels scales
almost linearly (most particle trajectories are locally 1D line)

.
cosmic /.

\, cosmic

) cosmic .
uBOO ) Vu g
BNB Data : Run 5419 Event 6573 March 14th, 2016




Toward Full 3D Reconstruction Chain '
Machine Learning for Particle Image Analysis

o1 A

“Applying for 3D” is simple, but is it scalable?
« LArTPC data is generally sparse but locally dense
- Mostly zero-filled matrix. CNN = dense matrix operation = bad!

- Matrix size (volume) scales by power low, but non-zero pixels scales
almost linearly (most particle trajectories are locally 1D line)

e CNN causes “blurring” which can be severe on sparse data

000

Input After 1st convolution After 2nd convolution

21



Toward Full 3D Reconstruction Chain
Machine Learning for Particle Image Analysis

e1 AL

P iy TN

“Applying for 3D” is simple, but is it scalable?
« LArTPC data is generally sparse but locally dense
- Mostly zero-filled matrix. CNN = dense matrix operation = bad!
- Matrix size (volume) scales by power low, but non-zero pixels scales
almost linearly (most particle trajectories are locally 1D line)

e CNN causes “blurring” which can be severe on sparse data

Solution: Sparse Submanifold Convolution
« Submanifold = “Input data with lower effective
dimension than the space in which it lives” !
 Can extract lower dimensional features effectively
- Ideally suited for our problems

* Developed by Facebook Al Research / Oxford | 4 - 4,
%——. g W &

- CVPR2018, best 3D semantic segmentation record
for ShapeNet (open 3D point-cloud dataset)

22


https://research.fb.com/publications/3d-semantic-segmentation-with-submanifold-sparse-convolutional-networks/

Toward Full 3D Reconstruction Chain

Machine Learning for Particle Image Analysis

el AL

Works amazingly well...

Dense
U-ResNet

Sparse
U-ResNet

Process time

(forward path)|** ms/img|13 ms/img
Memory

(forward path) 13 GB 6?0 MB
Train time {,..-»-"""('1“"” X IT»-._.\
(20 epochs) e CAYS ours,.-

This is a game changer...
Curse of dimensionality almost addressed = scalable to big data

What about accuracy?
It got better because the network can better focus on features

Dl AN

Using 3D data with 192”3 pixels
256 image/GPU in forward path

Trained to reach 99% accuracy in the
segmentation task

Paper w/ more details coming out

23



Toward Full 3D Reconstruction Chain

Machine Learning for Particle Image Analysis

Randomly picked event
Prediction accuracy 99.99%

/-.




Toward Full 3D Reconstruction Chain

Machine Learning for Particle Image Analysis

More space to learn...
~_ Proton
 EM Shower
° Michel Electron
= DbelmlaRay




Toward Full 3D Reconstruction Chain

Machine Learning for Particle Image Analysis

ol AL

Proton

MIP

EM Shower
Michel Electron
Delta Ray




Toward Full 3D Reconstruction Chain

Machine Learning for Particle Image Analysis

Proton L
MIP o
EM Shower |
Michel Electron
Delta Ray




... Wrapping up ...



Toward Full 3D Reconstruction Chain
Machine Learning for Particle Image Analysis

o1 AL
Dk

Where we are...

& 1. Space point (track edges) + pixel feature annotation
@ 2. Vertex finding + particle clustering

@ 3. Particle type + energy/momentum

0 4. Hierarchy building

Aiming to complete the full chain v.1 in early 2019, move
to physics analysis applications

29



Toward Full 3D Reconstruction Chain
Machine Learning for Particle Image Analysis

ey AL

Collaboration / Synergies

Wire LArTPC
« WireCell team (BNL) on SBN/DUNE
e Cluster3D (SLAC) on SBN
o LArFlow (Tufts) on MicroBooNE

Pixel LArTPC

e Interest from LBNL/UTA/Bern

- Looking forward to 2x2 ArgonCUBE modules
- Plan/Start working with students at LBNL and MSU specifically
for DUNE ND

Computing
« ANL demonstrating our code on distributed computing
environment

« ALCC with FNAL+ORNL for DUNE ND study on Summit
GPU HPC 30



Sharing Our R&D
Machine Learning & Broader Impact

A

o1 A
b M\

DeepLearnPhysics (deeplearnphysics.org)

« Collaboration for ML technique R&D
- ~70 members including HEP exp/theory, nuclear physics, BES
(LCLS, SSRL), Cryo-EM, accelerator, AI/CS community

« Open source software/tools, containers, open data
- our framework to collaborate & share reproducible results
« Community building

- In-person tutorials (SLAC,LBNL,FNAL,BNL,VTech,MIT,Columbia...)
- Sharing talk invitations, job/funding opportunities, etc.

DeepLearnPhysics

Research Collaboration

Crdalab

Semantic Segmentation of LArTPC tracks
Previous » Current
Aug. 12,2018, 1 am. UTC Oct.2,2018, 1 am. UTC
[

Why segmenting pixels?

Collaborations
beyond HEP

»
A T LA 2240

V’g B s S
P14/

Hands-on workshop
@ SLAC/Stanford

TR AR
""‘"\r

ooooooo

Public challenge (collab. w/ LHC)


http://www.deeplearnphysics.org
http://deeplearnphysics.org
http://deeplearnphysics.org/authors.html
https://github.com/DeepLearnPhysics
https://singularity-hub.org/collections/459
http://deeplearnphysics.org/DataChallenge
https://competitions.codalab.org/competitions/19818#learn_the_details
https://competitions.codalab.org/competitions/19818#learn_the_details

Sharing Our R&D
Machine Learning & Broader Impact

el A

pe Ty (U

Public Data Set: OSF Software Containers

OSFHOME ¥ My Quick Files My Projects ~ Search ~ Support  Donate .DeepLearnPhySICSv

Dashboard

DRGNS SVo[[IDEIEHCal Files wiki  Analytics  Registrations  Contributors ~ Add-ons  Settings

Make Private | Public | ¥ 0 | = PUBLIC | AUTOMATED BUILD

DeeplearnPhysics Public Dataset _
SP—— deeplearnphysics/ml-larcv2 ¢

Date created: 2018-12-03 01:23 PM | Last Updated: 2018-12-05 02:14 PM
Create DOI
Category: @ Project

Description:

Repo Info T Dock B D B
This Is a data sharing project organized by DeepLearnPhysics, a group of researchers developing ML techniques and applications for science. This project contains (at
least) 2 levels of sub-projects. The lowest level projects contain data files, and intermediate projects define group of applications and/or science domains. See the wiki for
more details.
License: CC0 1.0 Uni Short Description z

Wiki = Citation v

ML+LArCV2 docker container image builder
This is the top level project for data sharing sub-projects organized by
researchers in the DeepLearnPhysics organization. We aim to encourage Components
and maintain highly reproducible research work by other researchers
across different domains. We aim to achieve this by providing three things:

Add Component | Link Projects

Full Description £4
1. Publicly available data .
2. Publicly available software container © Open Samples for Liquid Argon Time
This project is... DeeplLearnPhysics
Read More Th a sub f sics f public data for e . o
rTPCs) LArCV: Liquid Argon Computer Vision
Files @ Image/Volumetric data processing framework developed for particle imaging detectors (LArTPC
T primarily though much of capability, if not all, is not constrained to it). Developed to interface
Click on a storage provider or drag and drop to upload ags .
(LAr)TPC experiment software data to a deep neural network frameworks. Get to know more
QFilter i . W
il Add a tag to enhance discoverability about this software @ our Wik
Name A v Modified A v
© DeeplLearnPhysics Public Dataset This repository provides larcv docker images with ML libraries (pytorch/tensorflow) as well as
other handy python modules. As a result, images tend to be big. For larcv image with minimal
set of libraries (no ML), look at this repository. For singularity images, checkout our s

huk ectior

Tags

All tags are built on the base linux images hosted in this repositor
o tf-1.12.0 (Dockerfile) ... tensorflow v1.12.0

¢ pytorch-0.4.1 (Dockerfile) ... pytorch 0.4.1

¢ pytorch-dev10152018-scn (Dockerfile)... pytorch development head (for v1.0.0 release),
tagged October 15th 2018, also include Sparse Submanifold Convolution external libraries.

docker

3Z



Thank you!
for your attention :)

Take Away Messages

Inside
me

1. Deep neural networks (DNNs) are efficient image feature
extraction techniques developed in computer vision

2. Sparse Submanifold Convolution is suited for LArTPC




Would love to collaborate?

Projects I am responsible for...
* Deep learning techniques R&D for LArTPCs
e HEP cross-frontier ML techniques R&D

Other projects I work on...
 Fermilab/ORNL for distributed ML algorithm optimization
 LBNL/Fermilab/CalTech for graph NN for particle clustering
 Fermilab for accelerated ML using edge computing devices
 LBNL/BNL for ML-based 3D pattern recognition

e MIT/Columbia for ML-based SBN data reconstruction
 Cryo-EM/SSRL (SLAC) for 3D tomogram analysis (biomedical)
e NASA-Ames/SLAC for pure Anomaly detection, computer vision

34
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Liquid Argon Time Projection
Chambers

Outline i \ "; \ |

ok
1. Neutrino Experiments & Detect(;gs .

2. Liquid Argon Time Projection &Mbersﬁ |
3. Machine Learning & Computer Vision .

4. Apphc L@ﬁﬁm Reconstruction
- Tap-up

Run 3493 Event 41075, October 23%°
75 cm 36



Next Neutrino Detectors?

uBooNE _
N

Bubble Chamber, ke

- L1q1d Argon Time PrOJectlonChamber

2015

» Chamber-like images: digitized electronics readout
» Calorimetric measurement + scalability to a large mass




How Wire LArTPC (MicroBooNE) Work (I)

1. Charged particles interact in LAr

e Jonize argon

* Produce scintillation light
2. Ionization e- drift toward anode
3. Wire planes detect drift e-

X=25m

k
/
/
/ ’/
2
Y
/
//
/
|
Cathode @ 70 kV Electric Field Anode
(plate) ~270 V/em (wire plane)

A

ur €

38



How Wire LArTPC (MicroBooNE) Work (I)

1. Charged particles interact in LAr

e [onize argon

® Produce scintillation light
2. Ionization e- drift toward anode
3. Wire planes detect drift e-

Cathode @ 70 kV
(plate)

Electric Field
~270 V/em

X=25m
7
e
I
N
(J6Y
=
Electrons
- y
/’
/
/
//
/
/
/
/
/
/ b‘&
/ N
VAN
/ 4
/ Scintillation Light
) / detected by PMTs
//
J
Anode

(wire plane)
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How Wire LArTPC (MicroBooNE) Work (I)

1. Charged particles interact in LAr

e Jonize argon
* Produce scintillation light

2. Ionization e- drift toward anode

3. Wire planes detect drift e-

Three

X=25m

Drift Time = X position

7Y

A

ur €

Scintillation Light
detected by PMTs

Cathode @ 70 kV
(plate)

Electric Field
~270 V/em

/
. /
/
/
J /
/
/Y
/7
/ Y
/
/
/
/
/’ Charge collected
/ by wire plane
Anode

(wire plane)

40




How Wire LArTPC (MicroBooNE) Work (1)
DUNE-ND

Pixel

1. Charged particles interact in LAr

2. Ionization e- drift toward anode

e Jonize argon
* Produce scintillation light

3. Wire-planes-detect drift e-

pixel detector

41

<

X=25m

Drift Time = X position

4

o
]
g?gg

J. Assadi et al. arxiv 1801.08884

>

\4

Ll
7 S

Cathode @ 70 kV
(plate)

Electric Field
~270 V/em

]
> & 7

YV

Charge collected
by pixel-pad plane

Scintillation Light
detected by PMTs

Anode
(wire plane)



https://arxiv.org/pdf/1801.08884.pdf

LArTPC: Particle Imaging Detector

... when things work ...

3D Imaging
(Pixel Detector)




100 cm

Challenges in Data Analysis?

100cm

s

There may be lots of backgrounds

Cosmlc Data Run 6280 Event 68’12 May 12th, 291/




Challenges in Data Analysis?

100 cm

R I. el
E =14 cmXx 14 cm. : | 5
—_— s’ Aj‘
o uBooNE ¢
c |
S L
Y~ ‘ :
\ 4 =200 Cm
MicroBooNE Aot /'
T Simulation — , i /

|

Interaction vertex can be anywhere
in LAr varying in size (cm meters)'

Cosmlc Data Run 6280 Event 6812 May 12th, 2016




Challenges in Data Analysis?
BooNE _ ..

! Cosmics

1 | -/ Cosmics

Identify neutrino interaction vertex, |
cluster individual particle energy depositions

Run 3469 Event 53223, October 21%, 2015 /
45

55 cm



Challenges in Data Analysis?

Deal with optical illusions in 2D projections
+ pattern recognitions in 3D

I uBooNP _

Run 1463 Event 23. August 15t 2015 10:37




N
“Fake” celebrity images

generated by DNN in
1024 X 1024 resolution

How may I help

Recent Innovations
in Computer Vision and A.lL.

47



Classic Problem: Image Categorization

A cat
= collection of
certain shapes

algorithm

48 Taken from slides by Fei-Fei’s TED talk



Classic Problem: Image Categorization
... how about these?

Partial cat Stretching cat
(escaping fiducial volume) (DIS?)




Breakthrough in Computer Vision in 2012

 AlexNet: 8-layers deep neural network
| Birth of “Deep Learning” . > 20,000
— TR ER——  citations!

For my reference

jaguar

cockroach ibi cheetah
tick bumper car snow leopard
starfish golfcart Egyptlan cat

mushroom spider monkey

jelly fungus elderberry| | titi

beach wagon || gill fungus |ffordshire bullterrier || indri
fire engine || dead-man's-fingers carrant || howler monkey



“Super-human” Performance in 4 years

Revolution of Depth 282
152 layers 1 :

\

\

\

‘ 22 layers ’ 19 Iayers
|

ILSVRC'15 ILSVRC'14 ILSVRC'14  ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)




Beyond Image Classification
~ Object Detection ~

AP TR AR N\

- ¥ boat | | \- A

‘ v \ \ : boat : 0.853 y iy person : 0.993

Ce——— oy Aree Nl \ . e ————————————————— - \ -
/-person '. 2 ‘

; | o ~ person : 0.972

r T L T s U
. 5 = 'S . o - g - 2P )
.4 onr ST o4 ),“ . L adr T Eid )_"‘

Image Classification Object Detection
(what?) (what + where?)

b2



Beyond Image Classification
~ Object Detection ~

/. BRE person : 0.910 ‘\‘"

¢ person 0?98"{‘ © umbrella : 0.910

person : 0.998....

handbag : 0.667

il M - chairchR757.97




Beyond Image Classification
~ Pixel Segmentation ~

sports ball
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https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

Beyond Image Classification
~ Image Generation ~



http://research.nvidia.com/publication/2017-10_Progressive-Growing-of

Image context analysis “Pose” detection

SR THSREE, 3 S 8 3 Y&
3 f £ 1.12 woman »
1

{ -0.28 in
3

1.23 white

45

I
r 1 0.06 standing

-0.13 with

1.45 dress

3.58 tennis

1.81 racket

0.06 two

0.05 people s~
-0.14in | :

0.30 green
-0.09 behind

Convolutional
Neural
Network

~ How does it work? ~

b



How a Simple Perceptron Works
Background: Neural Net
The basic unit of a neural net 1s

the perceptron (loosely based
on a real neuron)

O(x)

Takes 1n a vector of mputs (x).
Commonly inputs are summed Activation

with weights (w) and offset (b) Sum Output
then run through activation.

wi-X+b >0

VT/i-)_C)+bi<0.

58



How a Simple Perceptron Works

Perceptron 2D Classification

Imagine using two features to separate cats and dogs

wi-Xx+b >0

Output

cat
dog
iy

By picking a value for w and b,
domestication we define a boundary
Ty between the two sets of data

59


https://en.wikipedia.org/wiki/Perceptron

How a Simple Perceptron Works
Perceptron 2D Classification

Maybe we need to do better: assume a new data point
(small but not as well behaved)

Output

cat
dog

from wikipedia

60


https://en.wikipedia.org/wiki/Perceptron

How a Simple Perceptron Works
Perceptron 2D Classification

Maybe we need to do better: assume a new data point
(small but not as well behaved)

We can add another perceptron
to help (but does not yet solve

61



https://en.wikipedia.org/wiki/Perceptron

How a Simple Perceptron Works
Perceptron 2D Classification

Maybe we need to do better: assume a new data point
(small but not as well behaved)

Output
|
cat
dog
i

Another layer can classify based on
preceding feature layer output

62



“Classical” Neural Net

Fully-Connected, Feed-forward,
Multi-Layer Perceptrons

OOO
OOOO
O OO

O00

input hidden output
layer,¥  layers layer, ¥

A traditional neural network consists of a stack of layers of such
neurons where each neuron is fully connected to other neurons of
the neighbor layers

63



“Classical” Neural Net

... 1s not ideal for image classification ...

Image classification

« What is input neurons?
- Every pixel value

 How many weights?
- # of pixels in an image!

e Fully connected?
- translation variant!

64



Convolutional Neural Networks

CNN introduce a limitation by forcing the network to
look at only local, translation invariant features

Activation of a neuron depends on
the element-wise product of 3D
weight tensor with 3D input data
feature map and a bias term

» Translate over 2D space to process the whole mnput
e Neuron learns translation-invariant features

- Suited for a “/romogeneous” detector like LAITPC
* Qutput: a “feature-enhanced” image (feature map)

65



Convolutional Neural Networks

Filter

Neuron
output

SN =

Activation
function

1
[

Dot product,
add bias

1
1
0

S = o

1
[E—

weights

Toy visualization of the CNN operation

66



Convolutional Neural Networks

Feature Map

= ==

Toy visualization of the CNN operation

67



Convolutional Neural Networks

Introduction to CNNs Feature Maps
N Filters

Image

apply
many filters

Toy visualization of the CNN operation

68



How Image Classification Networks Work

Feature map visualization example

olbox p Visualization
convl pl nl convZ p2 n2 conv convl pl nl convZ p2 nZ cony

-yl



https://www.youtube.com/watch?v=AgkfIQ4IGaM

How Image Classification Networks Work

Goal: extract features to give “single label” to an image

1. Convolution operation
2. Down-sampling

Down-sampling
Feature Maps

Discriminants

After
After 3rd convolution

L
=1y
<
£
o
~Nad
=
=
=
o

2nd convolution
After

1st convolution

Series of convolutions
+ down-sampling
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How Image Classification Networks Work

Goal: extract features to give “single label” to an image

1. Convolution operation

2. Down-sampling s
_____________ >
“Written Texts”
Down-sampling feature map
Feature Maps

Discriminants

After
After 3rd convolution

2nd convolution
After

1st convolution

Series-of-convolutions, .. <
+ down-sampling

“Human Face”
Image credit: DeepVis @ youtube 71 feature map


https://www.youtube.com/watch?v=AgkfIQ4IGaM

How Image Classification Networks Work

Goal: extract features to give “single label” to an image

1. Convolution operation
2. Down-sampling

Down-sampling
Feature Maps

Discriminants

After
After 3rd convolution

L
=1y
<
£
o
~Nad
=
=
=
o

2nd convolution
After

1st convolution

Series of convolutions
+ down-sampling

2



How Image Classification Networks Work

Goal: extract features to give “single label” to an image

1. Convolution operation

2. Down-sampling s
_____________ >
“Written Texts”
Down-sampling feature map
Feature Maps

Discriminants

Input Image

After
After 3rd convolution

2nd convolution
After

1st convolution

Series-of-convolutions, .. <
+ down-sampling

“Human Face”
73 feature map






DNN for LArTPC Data Reconstruction

How does
U-ResNet Work?

Concatenation of 512 x 512 tensors

(I High spatial resolution mfo« " . \ Intermediate
512X 512X 6 . . e} 512X 512X 64
S Concatenation of tensors ? ?

\ at all spatial dimensions / 512
(32, 64, 128, 256)

Repeat Repeat 4 .
1/2 down-sampling 1=+ sereeriasannrerians >  x2 up-sampling Interpolation filters

+ ResNet convolutions + ResNet convolutions (up_ S amplin g)

\ | |||||| / .+ Convolutions

' ‘ (“1 bl 2] f.lt )

. (n{%t‘{%’g%g;d) earnapie I1ter
U-ResNet

Down sampling + Convolutions to identify

highly abstract features (e.g. “human face”)




Validation with real data




Benchmarking SSNet w/ Real Data
Samples (100 images per sample per sim/data)

A cosmic ray muon decay
- Involves both “track” and “shower”, simple and intuitive.

Neutrino interactions
- More complicated: varying particle types and multiplicity

Example a
Muon decay / |

“’ / MicroBooNE Data

Preliminary
o
’ 7 In-Progress




Decay Muons: Example Displays

MicroBooNE Data
Preliminary
In-Progress

1800 1850 1900

Wire

N

MicroBooNE Data
Preliminary
In-Progress

1850 1900 1950 2000 2050 2100
Wire

Input Image

MicroBooNE Data
Preliminary
In-Progress

1750 1800 1850 1900
Wire

MicroBooNE Data
Preliminary
In-Progress *

1850 1900 1950 2000 2050 2100
Wire

Human Label
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MicroBooNE Data
Preliminary
In-Progress

1750 1800 1850 1900

Wire

MicroBooNE Data
Preliminary
In-Progress !

1850 1900 1950 2000 2050 2100
‘Wire

SSNet Label




4 Visually Picked “Busy Neutrino Events”

>800 MicroBooNE Data

Preliminary
5600 In-Progress

5400}

Q
E5200
=

5000
4800}

4600
800 900 1000
Wire

Preliminary
In-Progress

>800 MicroBooNE Data

Preliminary
5600 In-Progress

5400
]

£5200
=

5000

4800

1100 1200 900 1000 1100 1200
Wire

Preliminary
In-Progress

2750 2800 2850 2900 2950 3000 3050 2750 2800 2850 2900 2950 3000 3050

Wire

Wire

Input Image Human Label

7ae)

>800 MicroBooNE Data

Preliminary
5600 In-Progress

5400

Q
£5200
H

5000

4800

1000 1100 1200
Wire

MicroBooNE Data-
Preliminary
In-Progress

2750 2800 2850 2900 2950 3000 3050
Wire

SSNet Label




Overall Performance

 Data/Simulation agreement within statistical error
- No systematic error included

« Network does better than a human analyzer (sim.)

Image Fraction

Muon Decay

Disagreement rate mean/std in %

Sample

Data

Simulation

Simulation

Simulation

Label

Physicist

Physicist

Simulation

Simulation

Prediction

U-Resnet

U-ResNet

U-ResNet

Physicist

ICPF mean

1.8

2.6

2.5

2.3

ICPF 90%

3.3

4.4

4.5

3.1

Shower

6.2

5.7

4.0

3.9

Track

1.1

1.9

1.6

1.3

°

©

°©

t

Data
Simulation

Human vs. Network
Disagreement pixel

fraction per event

(100 images)

0.10

Pixel-Label Disagreement Fraction

Neutrino w/ Gamma

Disagreement rate mean/std in %

Sample

Data

Simulation

Simulation

Simulation

Label

Physicist

Physicist

Simulation

Simulation

Prediction

U-ResNet

U-ResNet

U-ResNet

Physicist

ICPF mean

3.4

2.5

1.8

2.0

ICPF 90%

9.0

5.7

4.6

4.8

Shower

4.8

3.4

3.0

2.6

2.7

2.4

2.2

2.9

Image Fraction
© o © o o
N W

o©
=

o
[='=)

Data
Simulation

Human vs. Network
Disagreement pixel
fraction per event
(100 images)




Decay Muons: Pixel Value Variation

Studied how network performance varies when pixel
values are scaled by a constant factor

Data
MC

MicroBooNE Data g s MicroBooNE Data

Preliminary - : : Preliminary
In-Progress ' SE In-Progress
= :

i i ¥ e NP A 1 S o . O DR
40 60 80 100 120 140 160 180 200 40 160 180 200
Peak Pixel Value Peak Pixel Value

No scaling

Scaling Factor 0.75 0.95 1.00 1.05
Track 2.38 1.40 1.14 | 1.16

Shower 5.24 6.11 6.16  6.11
Combined 2.75 2.02 1.81 1.85

Change in the mean error rate is within 1% when
pixel values are scaled within 20%, fairly robust



Decay Muons: Inter-Pixel Correlation

Study, qualitatively, how network reacts to
interesting portions of an image

Region1 .
Bragg peak _
Region 2
Low energy
electron

Region 0 ...

o2
4
»

MIP part of a track

MicroBooNE Data
Preliminary
In-Progress

3000 3050 3100
_ Wire




ecay Muon: Inter-Pixel Correlation ... Region-0

= Shower Score

MicroBooNE Data ¢ MicroBooNE Data Track Score
Preliminary Preliminary .
In-Progress In-Progress ' MicrgBooNE Data
Preliminary
In-Progress

Pixel Fraction

0.4 0.6
Score

W Shower Score

MicroBooNE Data MicroBooNE Data Track Score
Preliminary Preliminary ] .
In-Progress In-Progress MlcronoNE Data
Preliminary
In-Progress

L
0.4 0.6
Score

W Shower Score

MicroBooNE Data MicroBooNE Data |m-_Track Score |
Preliminary Preliminary : MicroBooNE Data
In-Progress In-Progress Preliminary

In-Progress

°

Pixel Fraction

o
N

3035 3040 0. . 0.4 0.6

3015 3020 3025 3030 3035 3015 3020 3025 3030
Score

Wire Wire
s Shower Score

MicroBooNE Data MicroBooNE Data Track score
Preliminary Preliminary ) .
In-Progress In-Progress MICIOBpoNE Data
Preliminary
In-Progress

o

o
IS

Pixel Fraction




Decay Muon: Inter-Pixel Correlation ... Region-0

Shower Score

Sl MicroBooNE Data = Track Score

ifggn;:g MicroBooNE Data
g Preliminary
In-Progress

MicroBooNE Data
Preliminary
In-Progress

o o o
IS o ©

Pixel Fraction

<
]

o
=33
Sl

BN Shower Score

MicroBooNE Data mem Track Score

ifg;gn;:g MicroBooNE Data
g Preliminary
In-Progress

MicroBooNE Data
Preliminary
In-Progress

S
™

Fraction
o
o

In region-o0 (MIP muon track), the
longer the track becomes, the
network labels pixels as a track with .=

MicroBooNE Da . . Tack Score
Preliminary higher confidence. 'BooNE Data

In-Progress ‘eliminary

(follows our intuition!) “Progress

3020 3025 3030 3035 . 0.4 0.6
Wire Score
MicroBooNE Data
Preliminary
In-Progress

MicroBooNE Data

Preliminary -
In-Progress B

MicroBooNE Data
Preliminary
In-Progress

)
3020 3025 3030 3035 3040 302 B 3030 3035 3040 DHU
Wire B



ecay Muon: Inter-Pixel

MicroBooNE Data
Preliminary
In-Progress

MicroBooNE Data
Preliminary
In-Progress

Preliminary
In-Progress

MicroBooNE Data
Preliminary
In-Progress

3080 3090 3100
‘Wire

MicroBooNE Data
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MicroBooNE Data
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Decay Muon: Inter-Pixel Correlation ... Region-1

1.0,

W Shower Score
W Track Score
MicroBooNE Data

20 Preliminary
In-Progress

7250

=
®

S
o

£7150)

£

Pixel Fraction
o
IS

7100

MicroBooNE Data
Preliminary Preliminary
In-Progress o) In-Progress
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MicroBooNE Data
7050
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o
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[mmm shower score |
e Track Score |

MicroBooNE Data
Preliminary
In-Progress

In region-1 (muon Bragg peak),
where high/increasing dE/dX is
visible, the network is fairly o

m Shower Score

confident to label pixels as track ===

»)BooNE Data

disregard of a track length climinary
(distinction from MIP part!)

MicroBooNE Data
Preliminary Preliminary
In-Progress In-Progress

3080 3090 3100 3110 3120 3070 3080 3090 3100 3110
Wire Wire

MicroBooNE Da
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ecay Muon: Inter-Pixel Correlation ... Region-2

MicroBooNE Data
Preliminary
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MicroBooNE Data
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Decay Muon: Inter-Pixel Correlation ... Region-2

W Shower Score
B Track Score

MicroBooNE Data
Preliminary

i ) In-Progress
£ g
7150 7150
MicroBooNE Data MicroBooNE Data
Preliminary Preliminary
7100 In-Progress 7100 In-Progress

3100 3105 3110 3115 3120 3125 3130 3135 3140 3100 3105 3110 3115 3120 3125 3130 3135 3140
ire Wire

7250 7250

MicroBooNE Data
Preliminary

7200 7200 g
206 In-Progress
-

In region-2 (Michel electron), the network is almost zero-
confidence when given a straight MIP-like electron
trajectory. However when connected with wabbling

shower-like component, the straight trajectory part is
classified with high confidence as a shower. When
connected with Bragg peak, it has a slight preference
toward predicting a straight electron track as a shower.

rrrrrrrrrrrrr

S MicroBooNE Data
z Preliminary
00 In-Progress
Zo4

MicroBooNE Data
Preliminary Preliminary
In-Progress In-Progress

==
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Neutrino w/ Gammas: 4 Worst Events

MicroBooNE Data
Preliminary
In-Progress

1950

MicroBooNE Data
Preliminary
In-Progress

Input Image

Disagreement

16.6 % ~ MicroBooNE Data
- Preliminary
In-Progress

1950 2000 1950 2000
Wire Wire

MicroBooNE Data MicroBooNE Data
Preliminary 2 Preliminary
In-Progress In-Progress

Disagreement
16.6 %

89

SSNet Label



Neutrino w/ Gammas: 4 Worst Events

MicroBooNE bata
Preliminary
In-Progress

1760 1780 1800 1820 1840 1860 1880
Wire

MicroBooNE Data
Preliminary
In-Progress

Input Image

Disagreement
12.5 %

MicroBooNE Data
Preliminary
In-Progress

1760 1780 1800 1820 1840 1860 1880
Wire

MicroBooNE Data
Preliminary
In-Progress

“° Disagreement °

90

MicroBooNE Data

Preliminary
In-Progress

1760 1780 1800 1820 1840 1860 1880
Wire

MicroBooNE Data

Preliminary
In-Progress

SSNet Label



3D Data Reconstruction @ SLAC

=
O
=
D
-
5
1
=
=

ML can be started above age of 60

wing

e Sho




Progress Report
Machine Learning & Data Reconstruction

DN
S } Data ° ° °

o3 | -muaion]| Technique Validation on Data
=
£ 0.6 MicroBooNE | o e
: oo MicroBoolE Same paper ... arX1v.1808.f)7260 |
S04 - Important for new techniques such as this
E., = « Compared physicist vs. network predictions

0.00 0.6; 010 015 020 025 030 MicroBooNE

Pixel-Label Disagreement Fraction

Data
MicroBooNE
Data



https://arxiv.org/abs/1808.07269

Future/On-going Projects
Drawbacks of supervised learning & mitigations

ol AR

What can we do about imperfect simulation?

« Problematic: the “signal distribution” learnt by the
algorithm may be different in two domains!

. in ML domain?
- Can try CNN to “locate” where it is

Data

“Where are discrepancies”

/ ﬁf‘ @ pixel level
N\ / Semantic
)( f %K/ Segmentation f %k
\ / %k N\ “data vs. sim”

\ Overlaid

Simulation
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Future/On-going Projects
Drawbacks of supervised learning & mitigations

ol AR

What can we do about imperfect simulation?

« Problematic: the “signal distribution” learnt by the
algorithm may be different in two domains!

. in ML domain?
- Can try CNN to “locate” where it is
- Can try CNN to “fix” the discrepancy

Data

/ ;f‘ Data or Simulation?
\/

1/

Simulation
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Future/On-going Projects
Drawbacks of supervised learning & mitigations__ |

What can we do about imperfect simulation?

« Problematic: the “signal distribution” learnt by the
algorithm may be different in two domains!
. in ML domain?

- Can try CNN to “locate” where it is
- Can try CNN to “fix” the discrepancy

Data

ﬁr N / Data or Simulation?  Generative Adversarial Network
Can learn the “mapping” between the
data and simulation “distributions”.

The generator network can be used as
\ \ a synthetic image generator to train
N\ \

different neural networks

Simulation Synthetic simulation
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Future/On-going Projects
Drawbacks of supervised learning & mitigations

ol AR

Dk AN

What can we do about imperfect simulation?

« Problematic: the “signal distribution” learnt by the
algorithm may be different in two domains!

« Mitigation techniques in ML domain?
- Can try CNN to “locate” where it is
- Can try CNN to “fix” the discrepancy
- Can try a training technique to minimize the effect

oL, oL,
P Q\_/ T a0, Closs L,> Maximize the loss for
[> ﬂ ﬂ [> E class label ; discriminate data vs. simulation,
E> E> E> E> N feature extractors are penalized
| L m label predictor G, (- 6,) to key on simulat.ion specific
J?OO \ 00 @ g domain classifier Gy(+;64) lnformatlon
s : /f :90, —— A
* feature (‘XTI'IT()I‘ Gy(0 / @f ’75 Minerva Paper arXiv:1808.08332
|:> |i> a domain label d ) . L.
oL, Domain-Adversarial Training
E> of Neural Networks
_ forwardprop  backprop (and produced der ves) w 96



https://arxiv.org/pdf/1505.07818.pdf
https://arxiv.org/abs/1808.08332

LArTPC Experiments

Accelerator-based oscillation experiments

DUNE.: long baseline program (first beam expected @ 2026)
e Measure mass hierarchy and CP violation (vy=ve vs. Vy=Ve)
 Rare physics processes (proton decay, n-n, Supernova neutrinos)

Sanford Underground
Research Facility

goo miles o )
< (1300 ilometers) o ooeeeet
e v,f';"_’%_:-—v‘;:v:_:;jl:’:’v:‘ -
ey Ve
e
e V’:v_,‘!“_’

PARTICLE
DETECTOR PROTON

ACCELERATOR

L UNDERGROUND

PARTICLE DETECTOR
L ExiSTING

LABS

DUNE
Fermilab to SURF

Fermilab

NEUTRINO //
PRODUCTION



LArTPC Experiments

Accelerator-based oscillation experiments

DUNE.: long baseline program (first beam expected @ 2026)
e Measure mass hierarchy and CP violation (vy=ve vs. Vy=Ve)
 Rare physics processes (proton decay, n-n, Supernova neutrinos)

SBN: short baseline program (2015 ~)
e Measure vy—Vve to investigate possible sterile neutrino oscillation
* Employs three LArTPC detectors at different baselines
* LArTPC R&D for DUNE

SBN Program
at Fermilab

ICARUS T600 MicroBooNE

~476 ton @ L=600 m ~87 ton @ L=470 m ~112 ton @ L=110 m vu beam
o (BNB)




Scalability Solution for Sparse Data
Machine Learning for LArTPC Image Analysis

(ad B ¥ g
Dk

Clustering ... on-going work
(Left: track/shower separation output)
(Right: track pixel clustering using graph NN)
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Machine Learning Overview
Simple neural network (perceptron)

The basic unit of a neural net is
the (loosely based
on a real neuron)

Takes 1n a vector of mnputs (x).

Commonly inputs are summed

with weights (w) and offset (b)
then run through activation.

N
X

—

Xo Wo

X1 i: 2
| I—

Neuron

Input Sum

O_()_C,):{wi-x+bi

O(x)

Activation
Output

wi-X+b >0
Wi-f+bi<0.
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Machine Learning Overview

Simple neural network (perceptron)

size

domestication

from wikipedia

Imagine using two features to separate cats and dogs

o () = w; - X + b; wi-Xx+b >0
10 w;- X+ b; <O.

Output

20 — cat

d
X1 — ﬁ
By picking a value for w and b,
we define a boundary
between the two sets of data

o1 A
D AN
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https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Simple neural network (perceptron)

What 1f we have a new data point?
Output
" x  —
N 0™~ 2 —, cat
0
e dog
X1 -

x f
s ) aV
L y 1]
>
domestication

from wikipedia
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https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Simple neural network (perceptron) o

Dl AN

What 1f we have a new data point?

size

X1 —s 2

' We can add another perceptron
domestication
- to help (but does not yet solve the

from wikipedia problem)
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https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Simple neural network (perceptron)

o1 A

P iy TN

What 1f we have a new data point?

24

Output
—

cat
22 - dog

S

> Another layer can classify based
2o on preceding layer’s output
from wikipedia (of non-linear activation)
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https://en.wikipedia.org/wiki/Perceptron

Machine Learning Overview
Back to analyzing a cat “image...”

Goal: Dog or (Cat

Gy
I

k 1D array of discriminants

This part can be done
with a classic (fully-
connected) neural
network

How can we extract
“features” from “image”?

... the hard part...

(where I have failed for long)
106



Machine Learning Overview
Back to analyzing a cat “image...”

k 1D array of discriminants

This part can be done
with a classic (fully-
connected) neural
network

How can we extract
“features” from “image”?

Convolutional Neural
Network

107



Machine Learning Overview
Convolutional Neural Network (CNN)

convolutional
filter (kernel)
Ol1
\ 4
0]2 ——> X “neuron sum”
Ol1

“weights”

Jij(X) = O'(Wi - X+ bi),

N

Goal: Dog or (Cat

Gy
I

1D array of discriminants

»

)
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Machine Learning Overview
Convolutional Neural Network (CNN)

>

convolutional
filter (kernel)

O

1

O

O

1

——

Apply many
CZ) filters
(Conv. Layer)

“weights”

N
%

Goal: Dog or (Cat

777 777777777,
I

1D array of discriminants

)
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Machine Learning Overview

Convolutional Neural Network (CNN)

>
)

convolutional
filter (kernel)
o|1]o0 Apply many
4 filters
0|2]0]——>® Conv. Layer)
N (Conv. alyer
“weights”

Down
sample

N

Goal: Dog or (Cat

Gy
I

1D array of discriminants

e.g.) Max Pooling
10124
56|78 6|8
3210 3|4
1/2(3 |4
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Machine Learning Overview
Convolutional Neural Network (CNN)

»
)

convolutional
filter (kernel)
o|1]o0 Apply many
4 filters
0|2]0]——>® Conv. Lager]
N (Conv. alyer
“weights”

Down
sample

N

Goal: Dog or (Cat

Gy
I

1D array of discriminants

Apply more
filters 1

- ; (Conv. Layer) ]




Machine Learning Overview
Convolutional Neural Network (CNN)

>
)

N

Goal: Dog or (Cat

Gy
I

convolutional 1D array of discriminants
filter (kernel)
oj1]0 ! Apply many
filters
0|2|0|—®
olilo (Conv. Layer) Repeat
weights Apply more \“
filters -

- (Conv. Layer) ]




Machine Learning Overview
Supervised Training of CNN

>
)

N

Goal: Dog or (Cat

“Loss”
(error)
IIIIII/I/I/I/I//II/I/I/I/I/I/I/I’
I
Differential L
convolutional operations 1D array of discriminants
filter (kernel) dL __ dL dz
olilo y dr = dz dx
X “Back-propagation”
ol2]o _)f(X,Y) propas
B Repeat
“weights” )

Apply more
filters 1

(Conv. Layer) ]

T R



Machine Learning Overview
Summarizing CNNs

o1 A

P iy TN

e CNNs are “feature extraction machine”

- Consists of “convolution layers” with “kernels”
- A chain of linear algebra operations = “massively parallel”
» Suited for acceleration using many-core hardwares (e.g. GPUs)

« CNN: data < distribution “Mapping” (transformation)

Input Image

Down-sampling
Feature Maps

(s

After Discriminants

After 3rd conv. laver

2nd conv. laver

After
1st conv. laver
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Machine Learning Overview
Beyond image classification: object detection

« Object Detection

- Train CNN to regress “object location & size”
- “sliding windows” to find “regions of interest”
- With spatially contracted, feature-enhanced
data, detection is much faster!

Input Image .
Down-sampling . . ----=-="""" > ACtl;’atlon
__________ Feature Maps or
written
texts
After Discriminants
After 3rdyonv. laver
2nd conv. laver Activation
After for
T elsteomvAsweE oo Lo t ' human

faces



Machine Learning Overview
Beyond image classification: pixel segmentation

Intermediate,
low-resolution
feature map

« Combine “up-sampling” + convolutions
« Outcome: “learnable” interpolation filters



