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Deep Neural Networks 
for 3D Data  
Reconstruction
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LArTPC Data Reconstruction

Particle imaging 
= visually intuitive
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LArTPC Data Reconstruction

Reconstruction = Physical Feature Extraction

• Interaction vertex 
• Particle clustering 

- “line” vs. “shower” 
- Track fitting 

• Particle type ID 
• Particle energy/momentum 
• Neutrino flavour & energy
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• Interaction vertex 
• Particle clustering 

- “line” vs. “shower” 
- Track fitting 

• Particle type ID 
• Particle energy/momentum 
• Neutrino flavour & energy

Reconstruction = Physical Feature Extraction

LArTPC Data Reconstruction



Machine Learning 
and Computer Vision
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Machine Learning 
Challenge in Computer Vision

Image credits: TED talk by Fei-Fei Li

How to write  an algorithm  
to identify a cat?

… very hard task …
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Machine Learning 
Challenge in Computer Vision

1.  Write an algorithm based on basic (physics) principles  

algorithm

collection of  
certain shapesA cat  =

(or, a neutrino)

Development Workflow for non-ML algorithms

Image credits: TED talk by Fei-Fei Li
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1.  Write an algorithm based on basic (physics) principles  
2. Run on simulation/data samples 
3. Observe failures, implement fixes/heuristics 
4. Iterate over 2 & 3 till a satisfactory level is achieved 
5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Partial cat 
(escaping muon)

Stretching cat 
(Nuclear FSI)

collection of  
certain shapesA cat  =

(or, a neutrino)

algorithm

Development Workflow for non-ML algorithms

Machine Learning 
Challenge in Computer Vision

Image credits: TED talk by Fei-Fei Li
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Machine Learning
• Learn patterns from data 

- automation of steps 2, 3, and 4 

• Chain algorithms & optimize 
- step 5 addressed by design 

• “Deep Learning”  
- Revolutions in computer vision using deep 

neural networks

Machine Learning 
Challenge in Computer Vision

1.  Write an algorithm based on basic (physics) principles  
2. Run on simulation/data samples 
3. Observe failures, implement fixes/heuristics 
4. Iterate over 2 & 3 till a satisfactory level is achieved 
5. Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Development Workflow for non-ML algorithms

Natural 
Neural 

Network
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Machine Learning 
Revolution with Deep Neural Networks

2012

> 30,000 
citations“Deep” convolutional 

neural network broke the 
past record by a large margin

Public image categorization 
competition w/ 1.2M images, 

1000 object categories.
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Machine Learning 
Evolution of DNN: Beyond Image Classifications

Mask R-CNN 
arXiv:1703.06870  

Detection of Image Contexts
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Machine Learning 
Evolution of DNN: Beyond Image Classifications

Interpretation of Contexts’ Correlation

NeuralTalk 
github:karpathy/neuraltalk2 

https://github.com/karpathy/neuraltalk2
https://arxiv.org/pdf/1703.06870.pdf
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Machine Learning 
… for LArTPC Image Analysis

DNN is an efficient data transformation technique. “Image 
classification” transforms visually intuitive 2D/3D data into an 
array of discriminants (classes).

Input Data

“νe”
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Machine Learning 
… for LArTPC Data Reconstruction

+ + …

Outputs from the 
individual networks

Point 
Prediction

Pixel 
Feature

Particle 
Clustering

Input Data High-level 
Output

p

pepi

Multi-task Deep Neural Network 
Introduce physical feature extraction tasks (reconstruction) to 
bias the data transformation. Implicitly introduce physics 
concepts + construct logic for the final output.



Input Step 3

π

p

p
e

1. Space point (track edges) + pixel feature annotation 
2. Vertex finding + particle clustering 
3. Particle type + energy/momentum  
4. Hierarchy building

Step 1 Step 2

ML-based Full Data Reconstruction Chain 
•  A cluster of many task-specific networks in 2D & 3D 

-  Vertex finding, clustering, particle ID, etc.
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Machine Learning 
… for LArTPC Data Reconstruction

My ECA 
Program



Machine Learning in Computer Vision
High-Precision 

 Detector Data Analysis 

Image Credit 
Fermilab Today 
http://news.fnal.gov/2018/03/when-it-rains-2/  16

http://news.fnal.gov/2018/03/when-it-rains-2/
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ML Technique  
@ MicroBooNE 

LArTPC Detector

γ

µπ

e

νµ

MicroBooNE 
Simulation + Data Overlay

Image Classification 
• Classify a whole image into object categories 
• particle type identification from an image 
• signal/background selection

Object detection 
neutrino interaction 
vertex localization

νµ

JINST 12 P03011 (2017) 
arXiv:1611.05531

Early Demonstrations 
Machine Learning for LArTPC Image Analysis

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531


Semantic Segmentation 
• Recently published … arXiv:1808.07269 
• Pixel-level object classification 

- Separation of EM-particle from other types 
- Key input information for particle clustering 

• First time deep neural network validated on LArTPC data 
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Real Data Image Network Output

Early Demonstrations 
Machine Learning for LArTPC Image Analysis

Network Input Network Output

ML Technique  
@ MicroBooNE 

LArTPC Detector

https://arxiv.org/abs/1808.07269
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1000

100

10

10 2 3 4 5
Pixel distance between the target truth 
point to the closest proposed point

3mm/pixel 
resolution

Laura Domine (GS) 
Presented @ Neutrino2018 

Competition top-10 finalist!
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Multi-Task Network Cascade 
• Chain of Segmentation + Detection 

- Feature points: “shower start” and “track edges” 
- Classify each pixel into “shower” vs. “ track” 

• Extension to 3D data 
- Change in tensor dimensions, identical algorithms

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis
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“Applying for 3D” is simple, but is it scalable? 
• LArTPC data is generally sparse but locally dense 

- Mostly zero-filled matrix. CNN = dense matrix operation = bad! 
- Matrix size (volume) scales by power low, but non-zero pixels scales 

almost linearly (most particle trajectories are locally 1D line)

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis
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Input After 1st convolution After 2nd convolution

“Applying for 3D” is simple, but is it scalable? 
• LArTPC data is generally sparse but locally dense 

- Mostly zero-filled matrix. CNN = dense matrix operation = bad! 
- Matrix size (volume) scales by power low, but non-zero pixels scales 

almost linearly (most particle trajectories are locally 1D line) 
• CNN causes “blurring” which can be severe on sparse data

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis
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“Applying for 3D” is simple, but is it scalable? 
• LArTPC data is generally sparse but locally dense 

- Mostly zero-filled matrix. CNN = dense matrix operation = bad! 
- Matrix size (volume) scales by power low, but non-zero pixels scales 

almost linearly (most particle trajectories are locally 1D line) 
• CNN causes “blurring” which can be severe on sparse data
Solution: Sparse Submanifold Convolution 
• Submanifold = “Input data with lower effective 

dimension than the space in which it lives” 
• Can extract lower dimensional features effectively 

- Ideally suited for our problems 
• Developed by Facebook AI Research / Oxford 

- CVPR2018, best 3D semantic segmentation record 
for ShapeNet (open 3D point-cloud dataset)

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis

https://research.fb.com/publications/3d-semantic-segmentation-with-submanifold-sparse-convolutional-networks/
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Works amazingly well…
Dense 
U-ResNet

Sparse 
U-ResNet

Process time 
(forward path) 40 ms/img 13 ms/img

Memory 
(forward path) 13 GB 600 MB

Train time 
(20 epochs) 9 days 8 hours

• Using 3D data with 192^3 pixels 
• 256 image/GPU in forward path 
• Trained to reach 99% accuracy in the 

segmentation task  
• Paper w/ more details coming out

This is a game changer… 
Curse of dimensionality almost addressed = scalable to big data

What about accuracy? 
It got better because the network can better focus on features

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis

Preliminary
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Randomly picked event 
Prediction accuracy 99.99%

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis
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More space to learn… 
Proton 

MIP 
EM Shower 

Michel Electron 
Delta Ray

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis
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Proton 
MIP 
EM Shower 
Michel Electron 
Delta Ray

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis



!27

Proton 
MIP 
EM Shower 
Michel Electron 
Delta Ray

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis



… wrapping up …
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Input Step 3

π

p

p
e

Step 1 Step 2

Where we are…

Aiming to complete the full chain v.1 in early 2019, move 
to physics analysis applications

1. Space point (track edges) + pixel feature annotation 
2. Vertex finding + particle clustering 
3. Particle type + energy/momentum  
4. Hierarchy building

!29

Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis
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Toward Full 3D Reconstruction Chain 
Machine Learning for Particle Image Analysis

Collaboration / Synergies
Wire LArTPC 

• WireCell team (BNL) on SBN/DUNE 
• Cluster3D (SLAC) on SBN 
• LArFlow (Tufts) on MicroBooNE 

Pixel LArTPC 
• Interest from LBNL/UTA/Bern 

- Looking forward to 2x2 ArgonCUBE modules 
- Plan/Start working with students at LBNL and MSU specifically 

for DUNE ND 

Computing 
• ANL demonstrating our code on distributed computing 

environment 
• ALCC with FNAL+ORNL for DUNE ND study on Summit 

GPU HPC
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Sharing Our R&D 
Machine Learning & Broader Impact

DeepLearnPhysics (deeplearnphysics.org)

• Collaboration for ML technique R&D 
- ~70 members including HEP exp/theory, nuclear physics, BES 

(LCLS, SSRL), Cryo-EM, accelerator, AI/CS community 
• Open source software/tools, containers, open data 

- our framework to collaborate & share reproducible results 
• Community building 

- In-person tutorials (SLAC,LBNL,FNAL,BNL,VTech,MIT,Columbia…) 
- Sharing talk invitations, job/funding opportunities, etc. 

Hands-on workshop 
@ SLAC/Stanford

Public challenge (collab. w/ LHC)

Collaborations 
beyond HEP

http://www.deeplearnphysics.org
http://deeplearnphysics.org
http://deeplearnphysics.org/authors.html
https://github.com/DeepLearnPhysics
https://singularity-hub.org/collections/459
http://deeplearnphysics.org/DataChallenge
https://competitions.codalab.org/competitions/19818#learn_the_details
https://competitions.codalab.org/competitions/19818#learn_the_details


Sharing Our R&D 
Machine Learning & Broader Impact
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Public Data Set: OSF Software Containers



Take Away Messages

1. Deep neural networks (DNNs) are efficient image feature 
extraction techniques developed in computer vision

3. Full reconstruction chain is almost there, then physics!
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Inside 
me

Thank you! 
for your attention :)

2. Sparse Submanifold Convolution is suited for LArTPC 
data and allows scalable DNN development
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Would love to collaborate?
Inside 

me
Projects I am responsible for… 
• Deep learning techniques R&D for LArTPCs 
• HEP cross-frontier ML techniques R&D 

Other projects I work on… 
• Fermilab/ORNL for distributed ML algorithm optimization 
• LBNL/Fermilab/CalTech for graph NN for particle clustering 
• Fermilab for accelerated ML using edge computing devices 
• LBNL/BNL for ML-based 3D pattern recognition 
• MIT/Columbia for ML-based SBN data reconstruction 
• Cryo-EM/SSRL (SLAC) for 3D tomogram analysis (biomedical) 
• NASA-Ames/SLAC for pure Anomaly detection, computer vision
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Back-up Slides



Liquid Argon Time Projection 
Chambers
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Outline 
1. Neutrino Experiments & Detectors 
2. Liquid Argon Time Projection Chambers 
3. Machine Learning & Computer Vision 
4. Applications in Data Reconstruction 
5. Wrap-up
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νµ

Bubble Chamber

Liquid Argon Time Projection Chamber 
• Chamber-like images: digitized electronics readout 
• Calorimetric measurement + scalability to a large mass

~mm/pixel spatial resolution 
~MeV level sensitivity

MicroBooNE 
~87 ton (school bus size)

Next Neutrino Detectors?



How Wire LArTPC (MicroBooNE) Work (I)

Cathode @ 70 kV 
(plate)

Anode 
(wire plane)

Electric Field 
~270 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in LAr 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-
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ν



Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in LAr 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Scintillation Light

Electrons

Scintillation Light 
detected by PMTs

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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How Wire LArTPC (MicroBooNE) Work (I)



Scintillation Light 
detected by PMTs

Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in LAr 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Charge collected 
by wire plane

Drift Time = X position

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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Three 
Wire Planes

How Wire LArTPC (MicroBooNE) Work (I)



How Wire LArTPC (MicroBooNE) Work (I)

Scintillation Light 
detected by PMTs

Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in LAr 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Charge collected 
by pixel-pad plane

Drift Time = X position

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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Pixel

pixel detector

J. Assadi et al. arxiv 1801.08884

DUNE-ND

https://arxiv.org/pdf/1801.08884.pdf


LArTPC: Particle Imaging Detector

2D Projection 
(Wire Detector)

3D Imaging 
(Pixel Detector)

… when things work …
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100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016
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There may be lots of backgrounds

Challenges in Data Analysis?
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100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

55 cm
Run 3469 Event 53223, October 21st, 2015 

≃ 14 cm x 14 cm

≃ 200 cm

Interaction vertex can be anywhere 
in LAr, varying in size (cm ~ meters)

Challenges in Data Analysis?



55 cm
Run 3469 Event 53223, October 21st, 2015 

νµ

p

µ

π?

Cosmics

Cosmics

Cosmics
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Identify neutrino interaction vertex, 
cluster individual particle energy depositions

Challenges in Data Analysis?



Deal with optical illusions in 2D projections 
+ pattern recognitions in 3D

Challenges in Data Analysis?

“Physics features” look obvious to human physicists 
(eyes) but hand-engineering algorithms to extract 

them turned out challenging… 46
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How may I help  
LArTPCs?

“Fake” celebrity images 
generated by DNN in 

1024 x 1024 resolution

Recent Innovations 
in Computer Vision and A.I.



 48 Taken from slides by Fei-Fei’s TED talk

A cat  
= collection of  
certain shapes

algorithm

Classic Problem: Image Categorization



 49 Taken from slides by Fei-Fei’s TED talk

Partial cat 
(escaping fiducial volume)

… how about these?

Outliers 
(axions/dark matter)

Stretching cat 
(DIS?)

Classic Problem: Image Categorization



Breakthrough in Computer Vision in 2012

AlexNet: 8-layers deep neural network 
Birth of “Deep Learning” 

Jaguar

Leopard

For my reference

> 20,000 
citations!
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“Super-human” Performance in 4 years

 51



Beyond Image Classification 
~ Object Detection ~
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Beyond Image Classification 
~ Object Detection ~
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High precision donuts detection

Beyond Image Classification 
~ Pixel Segmentation ~
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Beyond Image Classification 
~ Caption Generation ~

“girl in pink dress is jumping in air”

“man in black shirt  
is playing guitar”

“black and white dog 
jumps over bar”

“construction worker  
in orange safety vest  
is working on road”

CVPR 2015 A. Karapathy, L. Fei-Fei  55

https://cs.stanford.edu/people/karpathy/cvpr2015.pdf


Beyond Image Classification 
~ Image Generation ~

“fake celebrity” 
Photo-realistic human face generation

ICLR 2018 T. Karras, T. Aila, S. Laine, J. Lehtinen 56

http://research.nvidia.com/publication/2017-10_Progressive-Growing-of


Convolutional 
Neural 

Network 
~ How does it work? ~

Image context analysis “Pose” detection
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⟶

x0 
 

Background: Neural Net

The basic unit of a neural net is 
the perceptron (loosely based 

on a real neuron) 

Takes in a vector of inputs (x). 
Commonly inputs are summed 
with weights (w) and offset (b) 

then run through activation.
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x

⋮

[ 

[ 

x1 
 

xn 
 

∑

w0

w1

wn

⋮
+ b

Input Neuron 
Sum

Activation 
Output

σ( x )➞

How a Simple Perceptron Works
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By picking a value for w and b,  
we define a boundary  

between the two sets of data

Perceptron 2D Classification

from wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

Imagine using two features to separate cats and dogs

∑0

0

How a Simple Perceptron Works

https://en.wikipedia.org/wiki/Perceptron
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Maybe we need to do better: assume a new data point  
(small but not as well behaved) 

Perceptron 2D Classification

from wikipedia

∑0

0

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

How a Simple Perceptron Works

https://en.wikipedia.org/wiki/Perceptron
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We can add another perceptron 
to help (but does not yet solve 

the problem)

Perceptron 2D Classification

x0 
 

x1 
 

from wikipedia

∑0

∑1

∑0

∑1

0

Maybe we need to do better: assume a new data point  
(small but not as well behaved) 

How a Simple Perceptron Works

https://en.wikipedia.org/wiki/Perceptron


[ 
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Perceptron 2D Classification

x0 
 

x1 
 

Output

[ 

cat 
dog

∑1

∑0

∑1

∑2

∑2

Another layer can classify based on  
preceding feature layer output

Maybe we need to do better: assume a new data point  
(small but not as well behaved) 

∑0

How a Simple Perceptron Works



Fully-Connected, Feed-forward, 
 Multi-Layer Perceptrons

A traditional neural network consists of a stack of layers of such 
neurons where each neuron is fully connected to other neurons of 
the neighbor layers

 63

“Classical” Neural Net



… is not ideal for image classification …

Image classification 
•  What is input neurons? 

-  Every pixel value 
•How many weights? 

-  # of pixels in an image! 

•Fully connected? 
-  translation variant!

“Classical” Neural Net

 64



CNN introduce a limitation by forcing the network to 
look at only local, translation invariant features

input feature map
hidden  
layers~x

input  
layer,   

output  
layer,   ~y

(a) Feed-forward neural network (b) Feed-forward neural network

neuron Activation of a neuron depends on 
the element-wise product of 3D 
weight tensor with 3D input data 

and a bias term
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• Translate over 2D space to process the whole input 
• Neuron learns translation-invariant features 

- Suited for a “homogeneous” detector like LArTPC 
• Output: a “feature-enhanced” image (feature map)

Convolutional Neural Networks



Toy visualization of the CNN operation
 66

Convolutional Neural Networks
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Introduction to CNNs

1
2
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Genty DL µB NP
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weights
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Introduction to CNNs

1
2
0
-1 0 1
3
1

0
-1 -1
-1
0

-20

-3

1
1
0
-1 -1 -1
1
1

1
1 -1
-1
1

20

0

0
1
0
-1 1 -2
1
-1

0
0 1
-1
1

-20

-3

Filter

Image

Feature Map

Genty DL µB NP

1 0 2 .  .  .

.  .  ..  .  .

weights

Toy visualization of the CNN operation
 67

Convolutional Neural Networks
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Introduction to CNNs

Image

Genty

N Filters

D
ep

th

DL µB NP

Feature Maps

many weights!

apply 
many filters

Toy visualization of the CNN operation
 68

Convolutional Neural Networks



Feature map visualization example 
• https://www.youtube.com/watch?v=AgkfIQ4IGaM

Neuron concerning face Neuron loving texts 
(and don’t care about your face)
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How Image Classification Networks Work

https://www.youtube.com/watch?v=AgkfIQ4IGaM


How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

Series of convolutions  
+ down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution
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Series of convolutions  
+ down-sampling

How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution
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“Written Texts” 
feature map

“Human Face” 
feature mapImage credit: DeepVis @ youtube

https://www.youtube.com/watch?v=AgkfIQ4IGaM


How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

Series of convolutions  
+ down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution
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Series of convolutions  
+ down-sampling

How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution
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“Written Texts” 
feature map

“Human Face” 
feature map



How SSNet Works
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In
pu

t I
m

ag
e

O
ut

pu
t I

m
ag

eDown-sampling Up-sampling

feature
tensor

Intermediate, low-resolution 
feature map

Goal: recover precise, pixel-level location of objects 
1. Up-sampling 

-  Expand spatial dimensions of feature maps 
2. Convolution 

-  Smoothing (interpolation) of up-sampled feature maps



DNN for LArTPC Data Reconstruction

U-ResNet

How does 
U-ResNet Work?

Down sampling + Convolutions to identify 
highly abstract features (e.g. “human face”)

Interpolation filters 
(up-sampling) 
+ Convolutions 
(“learnable” filter)

 75
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Validation with real data



Benchmarking SSNet w/ Real Data
Samples (100 images per sample per sim/data)

A cosmic ray muon decay 
- Involves both “track” and “shower”, simple and intuitive. 

Neutrino interactions 
- More complicated: varying particle types and multiplicity

µ

e-

MicroBooNE Data 
Preliminary 
In-Progress

Example 
Muon decay

 77
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Input Image Human Label SSNet Label

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

Decay Muons: Example Displays
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Input Image Human Label SSNet Label

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

4 Visually Picked “Busy Neutrino Events”



Overall Performance
•  Data/Simulation agreement within statistical error 

- No systematic error included 
•  Network does better than a human analyzer (sim.)

Human vs. Network 
Disagreement pixel 
fraction per event 

(100 images)
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Muon Decay Neutrino w/ Gamma

Disagreement rate mean/std in %

Human vs. Network 
Disagreement pixel 
fraction per event 

(100 images)

Disagreement rate mean/std in %



Decay Muons: Pixel Value Variation
Studied how network performance varies when pixel 

values are scaled by a constant factor

Data 
MC

Data x 0.75 
MC

No scaling

Change in the mean error rate is within 1% when 
pixel values are scaled within 20%, fairly robust 81

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress



Decay Muons: Inter-Pixel Correlation
Study, qualitatively, how network reacts to 

interesting portions of an image

MIP part of a track

Bragg peak

Low energy 
electron
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MicroBooNE Data 
Preliminary 
In-Progress



Decay Muon: Inter-Pixel Correlation … Region-0
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MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
In-Progress

MicroBooNE Data 
Preliminary 
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In region-0 (MIP muon track), the 
longer the track becomes, the 

network labels pixels as a track with 
higher confidence. 

(follows our intuition!)

Decay Muon: Inter-Pixel Correlation … Region-0
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Decay Muon: Inter-Pixel Correlation … Region-1
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In region-1 (muon Bragg peak), 
where high/increasing dE/dX is 

visible, the network is fairly 
confident to label pixels as track 

disregard of a track length 
(distinction from MIP part!)

Decay Muon: Inter-Pixel Correlation … Region-1
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Decay Muon: Inter-Pixel Correlation … Region-2
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In region-2 (Michel electron), the network is almost zero-
confidence when given a straight MIP-like electron 
trajectory. However when connected with wabbling 

shower-like component, the straight trajectory part is 
classified with high confidence as a shower. When 

connected with Bragg peak, it has a slight preference 
toward predicting a straight electron track as a shower. 

(see clear correlation with neighboring pixels)

Decay Muon: Inter-Pixel Correlation … Region-2



Neutrino w/ Gammas: 4 Worst Events
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Disagreement 
12.5 %

Disagreement 
16.2 %
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Neutrino w/ Gammas: 4 Worst Events



3D Data Reconstruction @ SLAC

Tracy Usher 
•  Showing ML can be started above age of 60

Tracy shows you can start ML above age of 60 91



Technique Validation on Data 
• Same paper … arXiv:1808.07269 

- Important for new techniques such as this 
• Compared physicist vs. network predictions
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Progress Report 
Machine Learning & Data Reconstruction

https://arxiv.org/abs/1808.07269
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Future/On-going Projects 
Drawbacks of supervised learning & mitigations

What can we do about imperfect simulation?
• Problematic: the “signal distribution” learnt by the 
algorithm may be different in two domains! 

• Mitigation techniques in ML domain? 
-  Can try CNN to “locate” where it is 

Data

Simulation

Overlaid

Semantic 
Segmentation 
“data vs. sim”

“Where are discrepancies” 
@ pixel level
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What can we do about imperfect simulation?
• Problematic: the “signal distribution” learnt by the 
algorithm may be different in two domains! 

• Mitigation techniques in ML domain? 
-  Can try CNN to “locate” where it is 
-  Can try CNN to “fix” the discrepancy 

Data

Simulation

D Data or Simulation?

Future/On-going Projects 
Drawbacks of supervised learning & mitigations
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What can we do about imperfect simulation?
• Problematic: the “signal distribution” learnt by the 
algorithm may be different in two domains! 

• Mitigation techniques in ML domain? 
-  Can try CNN to “locate” where it is 
-  Can try CNN to “fix” the discrepancy 

Data

Simulation Synthetic simulation

G

D Data or Simulation? Generative Adversarial Network 
Can learn the “mapping” between the 
data and simulation “distributions”. 
The generator network can be used as 
a synthetic image generator to train 
different neural networks

Future/On-going Projects 
Drawbacks of supervised learning & mitigations
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What can we do about imperfect simulation?
• Problematic: the “signal distribution” learnt by the 
algorithm may be different in two domains! 

• Mitigation techniques in ML domain? 
-  Can try CNN to “locate” where it is 
-  Can try CNN to “fix” the discrepancy 
-  Can try a training technique to minimize the effect

Domain-Adversarial Training 
of Neural Networks 

J. Mach. Learn. Res. 17  (2016)

Maximize the loss for 
discriminate data vs. simulation, 
feature extractors are penalized 

to key on simulation specific 
information

Minerva Paper arXiv:1808.08332

Future/On-going Projects 
Drawbacks of supervised learning & mitigations

https://arxiv.org/pdf/1505.07818.pdf
https://arxiv.org/abs/1808.08332


Accelerator-based oscillation experiments 
DUNE: long baseline program (first beam expected @ 2026) 

• Measure mass hierarchy and CP violation (νµ→νe vs. νµ→νe) 
• Rare physics processes (proton decay, n-n, Supernova neutrinos) 
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DUNE 
Fermilab to SURF

LArTPC Experiments



Accelerator-based oscillation experiments 
DUNE: long baseline program (first beam expected @ 2026) 

• Measure mass hierarchy and CP violation (νµ→νe vs. νµ→νe) 
• Rare physics processes (proton decay, n-n, Supernova neutrinos) 

SBN: short baseline program (2015 ~) 
• Measure νµ→νe to investigate possible sterile neutrino oscillation 
• Employs three LArTPC detectors at different baselines 
• LArTPC R&D for DUNE
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Scalability Solution for Sparse Data 
Machine Learning for LArTPC Image Analysis

Clustering … on-going work 
(Left: track/shower separation output) 

(Right: track pixel clustering using graph NN)
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⟶

x0 
 

The basic unit of a neural net is 
the perceptron (loosely based 

on a real neuron) 

Takes in a vector of inputs (x). 
Commonly inputs are summed 
with weights (w) and offset (b) 

then run through activation.

x

⋮

[ 

[ 

x1 
 

xn 
 

∑

w0

w1

wn

⋮
+ b

Input Neuron 
Sum

Activation 
Output

σ( x )➞

Machine Learning Overview 
Simple neural network (perceptron)
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By picking a value for w and b,  
we define a boundary  

between the two sets of datafrom wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

Imagine using two features to separate cats and dogs

∑0

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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from wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

What if we have a new data point?

∑0

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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from wikipedia

What if we have a new data point?

We can add another perceptron 
to help (but does not yet solve the 

problem)

x0 
 

x1 
 

∑0

∑1

∑0

∑1

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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from wikipedia

What if we have a new data point?

[ x0 
 

x1 
 

Output

[ 

cat 
dog

∑1
∑2

Another layer can classify based 
on preceding layer’s output  
(of non-linear activation)

∑0

∑0

∑1

∑2

Machine Learning Overview 
Simple neural network (perceptron)

https://en.wikipedia.org/wiki/Perceptron
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Machine Learning Overview 
Back to analyzing a cat “image…”

Goal: Dog Cator

1D array of discriminants

How?
This part can be done 
with a classic (fully-
connected) neural 

network

How can we extract 
“features” from “image”?

… the hard part … 
(where I have failed for long)



!107

Machine Learning Overview 
Back to analyzing a cat “image…”

Goal: Dog Cator

1D array of discriminants

How?
This part can be done 
with a classic (fully-
connected) neural 

network

How can we extract 
“features” from “image”?

Convolutional Neural 
Network
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Goal: Dog Cator

0
0
0 1

2 0
0

1 0
⊗

1D array of discriminants

Machine Learning Overview 
Convolutional Neural Network (CNN)

“neuron sum”

convolutional 
filter (kernel)

“weights”
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Machine Learning Overview 
Convolutional Neural Network (CNN)

Goal: Dog Cator

1D array of discriminants

0
0
0 1

2 0
0

1 0

convolutional 
filter (kernel)

⊗
Apply many 

filters 
(Conv. Layer)

“weights”
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Machine Learning Overview 
Convolutional Neural Network (CNN)

Goal: Dog Cator

1D array of discriminants

Down 
sample

0
0
0 1

2 0
0

1 0

convolutional 
filter (kernel)

⊗
Apply many 

filters 
(Conv. Layer)

“weights”

e.g.) Max Pooling
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Machine Learning Overview 
Convolutional Neural Network (CNN)

Goal: Dog Cator

1D array of discriminants

Down 
sample

Apply more 
filters 

(Conv. Layer)

0
0
0 1

2 0
0

1 0

convolutional 
filter (kernel)

⊗
Apply many 

filters 
(Conv. Layer)

“weights”



!112

Machine Learning Overview 
Convolutional Neural Network (CNN)

Goal: Dog Cator

1D array of discriminants

Down 
sample

0
0
0 1

2 0
0

1 0
⊗

Apply many 
filters 

(Conv. Layer) Repeat
Apply more 

filters 
(Conv. Layer)

convolutional 
filter (kernel)

“weights”
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Machine Learning Overview 
Supervised Training of CNN

Goal: Dog Cator

1D array of discriminants

Down 
sample

0
0
0 1

2 0
0

1 0 x
y

f (x,y)

“Loss” 
(error)

z = f (x,y) Repeat

Differential 
operations

“Back-propagation”

Apply more 
filters 

(Conv. Layer)

convolutional 
filter (kernel)

“weights”
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Machine Learning Overview 
Summarizing CNNs

• CNNs are “feature extraction machine”  
-  Consists of “convolution layers” with “kernels” 
-  A chain of linear algebra operations = “massively parallel” 

‣  Suited for acceleration using many-core hardwares (e.g. GPUs) 
• CNN: data ⇔ distribution “Mapping” (transformation)

Input Image

After 
1st conv. layer

Discriminants

Down-sampling 
Feature Maps

After 
2nd conv. layer

After 
3rd conv. layer
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Machine Learning Overview 
Beyond image classification: object detection

• Object Detection  
-  Train CNN to regress “object location & size” 
-  “sliding windows” to find “regions of interest” 

- With spatially contracted, feature-enhanced  
data, detection is much faster!

Input Image

After 
1st conv. layer

Discriminants

Down-sampling 
Feature Maps

After 
2nd conv. layer

After 
3rd conv. layer

Activation 
for 

written 
texts

Activation 
for 

human 
face
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Machine Learning Overview 
Beyond image classification: pixel segmentation

Intermediate,  
low-resolution 

feature map

down-sampling 

(encoding)
up-sampling (decoding)

?

• Combine “up-sampling” + convolutions 
• Outcome: “learnable” interpolation filters


