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So you want to do a physics analysis with
the DUNE ND Data?

« Want precision cross section measurements?
« Some other kind of BSM constraint?

Flux uncertainties are often a limiting systematic!

"~ ¥, That's someone
~ | else’s problem!
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Examples from NOvVA - ND Cross Sections

NOVA Preliminary
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Examples from NOvVA - ND Only Sterile Search

NOvVA Simulation , NOVA Simulation
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« Dominated by “normalization” §ystemg#C here. Note: xsec and flux normalization

uncertainties are a bit coupled!

« Dominated by “shape” systematics. Note again that xsec “shape” systematics have
significant contributions from flux uncertainties.
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DUNE Flux Uncertainties
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plots from Leo Aliaga

Dominant NOVA flux uncertainties come from 40% xsec uncertainties on secondary protons
interacting in non-carbon materials in the target and horns.

Lack of proton and pion scattering data at lower beam energies that NA61 cannot obtain.

~10% discrepancies observed between thin- and thick-target hadron production measurements
applied to NuMI and T2K beams. Both use NA49/61 thin-target measurements. Independent
measurements would be useful.
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DUNE Flux Uncertainties - Can we do better?

* Reasonable assumptions:
 Inelastic cross sections:
* No improvement for pions (5%)
* 10% uncertainty for kaons (currently 60-90% for p<4 GeV/c, 12% for p>4 GeV/c)
* 10% on p + C[Fe,Al] —>p + X (down from 40%)
* 10% on K] + C[Fe,Al] —> 1t + X (down from 40%)
* 20% on 1K1 + C[Fe,All —> K+ + X (down from 40%)
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EMPHATIC

Experiment to Measure the Production of Hadrons At a Test beam In
Chicagoland

» Uses the FNAL Test Beam Facility (FTBF), either MTest or MCenter

» Table-top size experiment, focused on hadron production measurements
with pream < 15 GeV/c, but will also measure 120 GeV/c p+C.

Ultimate design: RPC ToF
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EMPHATIC

» Experiment to Measure the Production of Hadrons At a Test beam In
Chicagoland
» Uses the FNAL Test Beam Facility (FTBF), either MTest or MCenter

» Table-top size experiment, focused on hadron production measurements
with pream < 15 GeV/c, but will also measure 120 GeV/c p+C.

« Ultimate design: RPC ToF . Lead glass

counter
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EMPHATIC: Magnet

Neodymium permanent magnet Po.dr timm. =)
- Internal field: 1.44T
- Low cost: ~$10 for 1-inch cube
Halbach array build by M. Lang
- 10cm bore radius and B=0.25T

200
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~$1000 magnet

* Need to scale up bore radius by ~3x
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EMPHATIC: Si Strip Detectors
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* Large-area SiSDs available from Fermilab SiDet. Existing DAQ system.
Resolution good enough for downstream tracking.

* Upstream tracking to be done by existing SiSDs at the FTBF.
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EMPHATIC: PID Detectors (from J-PARC E50)
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X-type Cerenkov counter

= Developing Cerenkov timing counter
> Cerenkov lights emit in an extremely short time.

v'Reduce the time spread of photons
reaching to the optical sensor

v'Having a fast timing response

v'It has the advantage to measure
the better time resolution.

X-type Cerenkov

»Use “Cross shape” acrylic, called X-type,
which is cut from an acrylic board

v'In order to cancel position dependences of
the time resolution in the Cerenkov radiator

X-type acrylic

Front Side

— N

Physics with General Purpose Spectrometer in the High-momentum Beam Line 2018/8/28

»>The Cerenkov counter is made up of X-type
acrylic and MPPC with a shaping amplifier
circuit.

It is the first time to use the Cerenkov
detector for a timing counter
with the X-type acrylic.
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Multi-gap Resistive Plate Chamber (MRPC)
amp T

Readout strip

Amp

Insulator (G10)
Carbon electrode
Glass resistive plate

200~300 pm

P N Spacer
Ground \ ’ Ground

* Resistive Plate -> Avoid discharge
* Smaller gap -> Better time resolution
* Multi gap -> Higher efficiency, better time resolution

~10 kV

\
N

* Can be used under magnetic field E50 Pole face
+ ~60 ps high time resolution in large area \JL & Internal
* Low cost TOF detector



EMPHATIC: PID Detectors (from E50)

To Be Developed

Built and Tested
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EMPHATIC: Initial beam test from Jan. 10-23, 2018

13

Proof-of-principle/engineering run enabled primarily by 2017 US-Japan

funds

« Japan: aerogel detectors, emulsion films and associated equipment,
travel

« US: emulsion handling facility at Fermilab

« Critical DAQ, motion table and manpower contributions from TRIUMF

Aerogel

Gas SSDs SSDs Pb-Glass
Emulsion/ Threshold )

Ckov Calorimeter
Target Ckov

Detectors,

Scint. Trigger

<
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EMPHATIC: Initial beam test from Jan. 10-23, 2018

« Two setups in this run:

* |n each case, we

14

used the existing:
* SSDs for tracking

* Two differential gas

upstream and

downstream of the g
Trigger

targets counter
Aerogel Ckovs and |
Pb-glass

calorimeter

downstream

Ckov detectors
upstream to tag the
beam (1 w/ two
mirrors)

Jonathan M. Paley

one with emulsion bricks, another with thin targets
MT6.1-A

i AN .
Si pixel %""A e
ors \! e
. T L .
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EMPHATIC: Initial beam test from Jan. 10-23, 2018

« Two setups in this run: one with emulsion bricks, another with thin targets

* In each case, we MT6.1-B
used the existing: -

* SSDs for tracking
upstream and Lead glass | I/
downstream of the CH counter § 1 _
targets —

* Aerogel Ckovs and
Pb-glass
calorimeter
downstream

- Two differential gas
Ckov detectors
upstream to tag the
beam (1 w/ two
mirrors)

Aerogel CH "
counters

2% Fermilab

15 Jonathan M. Paley



EMPHATIC: Thin-target data w/ silicon tracking only
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EMPHATIC: Thin-target data w/ silicon tracking only

Number of min. bias triggers

Graphite Aluminum

120 GeV

30 GeV/c

-30 GeV/c

20 GeV/c

10 GeV/c

2 GeV

Note: min. bias trigger efficiency is 100%
$& Fermilab
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EMPHATIC: Thin-target data w/ silicon tracking only

Total xsec from optical theorem
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G. Bellettini et al., Nucl. Phys. 79, 609 (1966)

‘t‘ = pbeamegcatt

2% Fermilab

18 Jonathan M. Paley



EMPHATIC:

Thin-target data w/ silicon tracking only

4-momentum transfer (raw data)
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Data are being analyzed, systematics under assessment,

but most look to be <5%.
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EMPHATIC: Thin-target data w/ silicon tracking only

Rapid progress on
the analysis, aiming
for publication of
these results soon.
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Summary

21

New hadron production data are needed if we want to reduce our
neutrino flux uncertainty.

EMPHATIC offers a cost-effective approach to reducing the hadron
production uncertainties by at least a factor of 2.

We have developed an initial design of the spectrometer, run plans for
2019-21, and are putting together a proposal (should be on arXiv very
soon).

Hardware contributions from Fermilab, Canada and Japan. Possibilities
for new institutions: VME-based electronics, DAQ development, people
power.

Useful data collected during an engineering run in January 2018,
analysis is progressing rapidly. Aiming for publication of results soon.

We will collect a huge amount of data in a relatively short amount of
time... we need more NuMI/LBNF stakeholder involvement.

Lots of room for new institutions to get involved! .
= 2% Fermilab
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BACKUP

2% Fermilab

23 Jonathan M. Paley



