Compact perturbative expressions for oscillations with sterile neutrinos in matter

Xining Zhang, University of Chicago

PONDD, Fermilab

December 4, 2018

Work done with S. Parke
Neutrino oscillations in vacuum

In a scheme with N sterile neutrinos, the oscillation probabilities in vacuum are

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{j=1}^{3+N} U_{\alpha j}^* U_{\beta j} e^{i\Delta m^2_{j1}/2E} \right|^2$$

U is the PMNS matrix which converts the energy eigenstates to the flavor eigenstates.

$$H_{\text{vacuum}} = \frac{1}{2E} U \begin{pmatrix} 0 & \Delta m^2_{21} & \Delta m^2_{31} \\ \Delta m^2_{21} & 0 & \Delta m^2_{32} \\ \Delta m^2_{31} & \Delta m^2_{32} & \ddots \end{pmatrix} U^\dagger$$
Matter effect

In matters, propagation of the neutrinos will be altered by the L. Wolfenstein matter effect.

\[V_{NC} = \mp \sqrt{2} G_F N_n / 2 \quad V_{CC} = \pm \sqrt{2} G_F N_e \]

\(N_n \) and \(N_e \) are the number densities of the neutrons and electrons, respectively, when \(N_n \approx N_e \), we have \(V_{NC} \approx -V_{CC} / 2 \). The sterile neutrinos will not be engaged in the matter effects.
Hamiltonian in matter

The Hamiltonian in the flavor basis becomes (free to add a multiple of the identity)

\[H = H_{\text{vacuum}} + \frac{1}{2E} \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & a/2 \\ 0 & a/2 & \ddots \\ \vdots & \ddots & \ddots & a/2 \end{pmatrix}, \]

where \(a = 2\sqrt{2}G_F N_e E. \)

Now the PMNS matrix in vacuum \(U \) can no longer diagonalize the Hamiltonian, the energy eigenstates and eigenvalues are altered by the matter effect.
Solve the eigensystem in matter

\[H = \frac{1}{2E} V^\dagger \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \lambda_3 & \\ & & & \lambda_4 \\ \vdots & & & \ddots \\ & & & & \lambda_{3+N} \end{pmatrix} V \]

Solve for \(V \) and \(\lambda_i \).

Analytic solutions

- Only possible for 3+1 model \(1808.03985 \)

Perturbation expansions

- degeneracy of the zeroth order eigenvalues

Rotations+Perturbation expansions
The rotations can do...

- Disentangle the crossings of the 0^{th} order eigenvalues
- Diminish off-diagonal elements of the Hamiltonian
- Give 0^{th} order eigenvalues and mixing parameters (angles and phases)
Define \(\Delta m_{ee}^2 \equiv \Delta m_{31}^2 - s_{12}^2 \Delta m_{21}^2 \), \(\epsilon \equiv \Delta m_{21}^2 / \Delta m_{ee}^2 \approx 0.03 \).

Orders of some important parameters

- weak mixing with sterile neutrinos, \(\sin \theta_{i(3+n)} \sim O(\sqrt{\epsilon}) \)
- heavy sterile neutrinos, \(\Delta m_{ee}^2 / \Delta m_{(3+n)}^2 \sim O(\epsilon) \).
- not extremely strong matter effect, \(a \sim \Delta m_{ee}^2 \), so \(a / \Delta m_{(3+n)}^2 \sim O(\epsilon) \)
Step 0: Convention of the vacuum PMNS matrix

A usual convention to define the PMNS matrix in vacuum, rotations mixing with the sterile neutrinos come after the ones in the active neutrino space

\[U = U_{\text{sterile}} U_{23} U_{13} U_{12} \]

A different convention to define the PMNS matrix

\[U = U_{23} U_{\text{sterile}} U_{13} U_{12} \]

The matter potential term in the Hamiltonian is invariant under a transformation in the (2-3) sector. If \(U_{23} \) is the last rotation, the following rotations process will be simplified.
Step 1: Vacuum U_{23} rotation

$$H \Rightarrow U_{23}^\dagger(\theta_{23}, \delta_{23}) H U_{23}(\theta_{23}, \delta_{23})$$

$$= U_{23}^\dagger(\theta_{23}, \delta_{23}) H_{\text{vacuum}} U_{23}(\theta_{23}, \delta_{23}) + \frac{1}{2E} \begin{pmatrix} a & 0 & 0 \\ 0 & a/2 & \cdots \\ 0 & \cdots & a/2 \end{pmatrix}$$

θ_{23} and δ_{23} are in vacuum.
Step 2: Vacuum U_{sterile} rotations.

$U_{23}^\dagger(\theta_{23}, \delta_{23}) \ H \ U_{23}(\theta_{23}, \delta_{23})$

$\Rightarrow \tilde{H} \equiv U_{\text{sterile}}^\dagger \ U_{23}^\dagger(\theta_{23}, \delta_{23}) \ H \ U_{23}(\theta_{23}, \delta_{23}) \ U_{\text{sterile}}$

Rotations parameter (angles and phases) in U_{sterile} are still in vacuum
Step 3: U_{13} rotation, explicit derivation in the 3+1 scheme

$$\tilde{H} = \frac{1}{2E} \begin{pmatrix} \lambda_a & \cdots & (\tilde{H})_{13} & \cdots \\ \vdots & \lambda_b & \vdots \\ (\tilde{H})_{13}^* & \cdots & \lambda_c \\ \vdots & \cdots & \cdots \end{pmatrix}$$

- **Kill** $(\tilde{H})_{13}$
- **Resolve the crossing of** λ_a and λ_c at $a \simeq \frac{\cos^2\theta_{13}}{c_{14}^2} \Delta m_{ee}^2$.

Normal Order

![Graph showing λ versus $Y_e \rho E$](image-url)

- λ_a
- λ_b
- λ_c
Step 3: Continued

\[\lambda_a = (s_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 + (c_{14}^2 + \frac{\epsilon}{2} k_{11} c_{24}^2 c_{34}^2) a \quad k_{ij} = \frac{S_{i4} S_{j4}}{\epsilon} \sim O(1) \]

\[\lambda_b = \epsilon c_{12}^2 \Delta m_{ee}^2 + \frac{\epsilon}{2} k_{22} c_{34}^2 a \]

\[\lambda_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2 + \frac{\epsilon}{2} k_{33} a \]

\[(\tilde{H})_{13} = s_{13} c_{13} \Delta m_{ee}^2 + \frac{\epsilon}{2} a k_{13} c_{24} c_{34} e^{-i\delta_{13}} \]
Step 3: Continued

Diagonalize the (1-3) sector of \tilde{H} by implementing a complex rotation $U_{13}(\tilde{\theta}_{13}, \alpha_{13})$

$$\tilde{H} \Rightarrow \hat{H} \equiv U_{13}^\dagger(\tilde{\theta}_{13}, \alpha_{13}) \tilde{H} U_{13}(\tilde{\theta}_{13}, \alpha_{13})$$

$$\tilde{\theta}_{13} = \frac{1}{2} \arccos \frac{\lambda_c - \lambda_a}{\sqrt{\left|\lambda_c - \lambda_a\right|^2 + 4|s_{13}c_{13}\Delta m_{ee}^2 + \frac{\epsilon}{2}a k_{13}c_{24}c_{34}e^{-i\delta_{34}}|^2}}$$

$$\alpha_{13} = \text{Arg}\left[s_{13}c_{13}\Delta m_{ee}^2 + \frac{\epsilon}{2}a k_{13}c_{24}c_{34}e^{-i\delta_{34}} \right]$$
Step 4: U_{12} rotation, explicit derivation in the 3+1 scheme

$$\hat{H} = \frac{1}{2E} \begin{pmatrix} \lambda_- & (\hat{H})_{12} & 0 & \cdots \\ (\hat{H})^*_{12} & \lambda_0 & (\hat{H})_{23} & \cdots \\ 0 & (\hat{H})^*_{23} & \lambda_+ & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- Kill $(\hat{H})_{12}$
- Resolve the crossing of λ_- and λ_0 at the solar resonance.

![Normal Order Graph](image_url)
Step 4: Continued

\[\lambda_- = \frac{1}{2} \left[(\lambda_a + \lambda_c) - \right. \]

\[\text{sign}(\Delta m^2_{ee}) \sqrt{(\lambda_a - \lambda_c)^2 + 4 |s_{13} c_{13} \Delta m^2_{ee} + \frac{\epsilon}{2} a k_{13} c_{24} c_{34} e^{-i\delta_{34}}|^2} \]

\[\lambda_0 = \lambda_b = \epsilon c_{12}^2 \Delta m^2_{ee} + \frac{\epsilon}{2} k_{22} c_{34}^2 a \]

\[\lambda_+ = \frac{1}{2} \left[(\lambda_a + \lambda_c) + \right. \]

\[\text{sign}(\Delta m^2_{ee}) \sqrt{(\lambda_a - \lambda_c)^2 + 4 |s_{13} c_{13} \Delta m^2_{ee} + \frac{\epsilon}{2} a k_{13} c_{24} c_{34} e^{-i\delta_{34}}|^2} \]

\((\hat{H})_{12} = \epsilon \left\{ s_{12} c_{12} (c_{13} \tilde{c}_{13} + s_{13} \tilde{s}_{13} e^{-i\alpha_{13}}) \Delta m^2_{ee} \right. \]

\[+ \frac{a}{2} \left[k_{12} c_{24} c_{34}^2 \tilde{c}_{13} - k_{23} c_{34} \tilde{s}_{13} e^{i(\delta_{34} + \alpha_{13})} \right] e^{-i\delta_{24}} \right\} \]

\((\hat{H})_{23} = \epsilon \left\{ s_{12} c_{12} (-s_{13} \tilde{c}_{13} + c_{13} \tilde{s}_{13} e^{i\alpha_{13}}) \Delta m^2_{ee} \right. \]

\[+ \frac{a}{2} \left[k_{12} c_{24} c_{34}^2 \tilde{s}_{13} e^{i\alpha_{13}} + k_{23} c_{34} \tilde{c}_{13} e^{i\delta_{34}} \right] e^{i\delta_{24}} \right\} \]
Step 4: Continued

Diagonalize the (1-2) sector of \hat{H} by implementing a complex rotation $U_{12}(\tilde{\theta}_{12}, \alpha_{12})$

$$\hat{H} \Rightarrow \tilde{\hat{H}} \equiv U_{12}^\dagger(\tilde{\theta}_{12}, \alpha_{12}) \hat{H} U_{12}(\tilde{\theta}_{12}, \alpha_{12})$$

$$\tilde{\theta}_{12} = \frac{1}{2} \arccos \frac{\lambda_0 - \lambda_-}{\sqrt{|\lambda_0 - \lambda_-|^2 + 4|\hat{H}_{12}|^2}}$$

$$\alpha_{12} = \text{Arg}[(\hat{H})_{12}]$$
In the 3+1 scheme

\[V^{(0)} = U_{23} U_{34} U_{24} U_{14} U_{13} U_{12} \]

\[\tilde{H} = \frac{1}{2E} \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \\ \lambda_3 & \lambda_4 \end{pmatrix} + \tilde{H}_1 \]

\[\tilde{H}_0 \]

All diagonal elements of \(\tilde{H} \) have been absorbed into the 0\(^{th}\) order Hamiltonian \(\tilde{H}_0 \)
0^{th} order eigenvalues in the active neutrino space

$$\lambda_{1,2} = \frac{1}{2} \left[(\lambda_- + \lambda_0) \mp \sqrt{(\lambda_- - \lambda_0)^2 + 4|\hat{H}_{12}|^2} \right]$$

$$\lambda_3 = \lambda_+$$

Normal Order

![Graph showing the relationship between $\lambda(10^{-3} \text{eV}^2)$ and $Y_e \rho E$ (g cm$^{-3}$ GeV).](image)
Active sectors of the perturbative Hamiltonian

All the diagonal elements of \(\hat{\mathcal{H}}_1 \) vanish, the off-diagonal elements in the sector of the active neutrinos (first three rows and columns) are

\[
\begin{align*}
(\hat{\mathcal{H}}_1)_{12} &= 0 \\
(\hat{\mathcal{H}}_1)_{13} &= -\tilde{s}_{12}(\hat{\mathcal{H}})_{23} e^{-i\alpha_{12}} \\
(\hat{\mathcal{H}}_1)_{23} &= \tilde{c}_{12}(\hat{\mathcal{H}})_{23}
\end{align*}
\]

Since \((\hat{\mathcal{H}})_{23} \sim \mathcal{O}(\epsilon)\), sectors of the active neutrinos \(\sim \mathcal{O}(\epsilon) \)
Sectors of the sterile neutrino

Crossings of the eigenvalues to λ_4

$$\lambda_4 = \Delta m^2_{41} - \frac{a^2 c_{14}^2 c_{24}^2 c_{34}^2}{2} \gg \Delta m^2_{ee} \sim a$$

Crossings to λ_4 only happen with very high neutrino energy ($E \gg 10\text{GeV}$), we are not interested in this energy scale.

4th row and column of \tilde{H}_1

Elements in the 4th row and column of the perturbative Hamiltonian

$$(\tilde{H}_1)_{i4} \propto \frac{a s_{i4}}{2E} \sim \mathcal{O}(\sqrt{\epsilon}), \; i = 1, 2, 3$$

However, they are not going to give $\mathcal{O}(\sqrt{\epsilon})$ corrections, because in perturbative expressions they will be divided by λ_4.
Important special cases

Back to exact values in vacuum

In vacuum, $a = 0$, the 0^{th} order approximations will give exact vacuum values, i.e. $\tilde{\theta}_{13,12} = \theta_{13,12}$, $\alpha_{13,12} = 0$, $\lambda_i = \Delta m^2_{i1}$ and $\tilde{\mathcal{H}}_1 = 0$.

Related to the Standard Model

When $U_{\text{sterile}} = 1$, i.e. $s_{i4} = 0$ in the $3+1$ scheme, the results go to the DMP for the SM.
Perturbative expansion: Corrections to the eigenvalues

\[\lambda_i^{(\text{ex})} = \lambda_i + \lambda_i^{(1)} + \lambda_i^{(2)} + \cdots \]

\(\lambda_i^{(n)} \) are the \(n^{\text{th}} \) order corrections.

\[\lambda_i^{(1)} = 2E(\hat{H}_1)_{ii} \]

Since \(\hat{H}_1 \) has zero diagonal elements, the first order corrections are trivial.

\[\lambda_i^{(2)} = \sum_{k \neq i} \frac{|2E(\hat{H}_1)_{ik}|^2}{\lambda_i - \lambda_k} \]

If \(i, k \in \{1, 2, 3\} \), \(|(\hat{H}_1)_{ik}|^2 \) will be zero or in scale of \(\epsilon^2 \). Otherwise either \(\lambda_i \) or \(\lambda_k \) will be \(\lambda_4 \), then the denominator will be \(\gtrsim \epsilon^{-1} \), moreover, since \((\hat{H}_1)_{i4} \sim \sqrt{\epsilon} \), the square in the numerator provides another necessary \(\epsilon \).
Perturbative expansion: Corrections to the eigenstates

\[V^{(ex)} = V^{(0)}(1 + W_1 + W_2 + \cdots) \]

\(W_n \) are \(n^{th} \) order corrections.

\[
(W_1)_{ij} = \begin{cases}
0, & i = j \\
-\frac{2E(\tilde{H}_1)_{ij}}{\lambda_i - \lambda_j}, & i \neq j
\end{cases}
\]

Again if \(i, k \in \{1, 2, 3\} \), \((\tilde{H}_1)_{ik} \) will be zero or in scale of \(\epsilon \), otherwise either \(\lambda_i \) or \(\lambda_k \) will be \(\lambda_4 \), then the denominator will be \(\gtrsim \epsilon^{-1} \).
Perturbative expansion: eigenstates continued

\[
(W_2)_{ij} = \begin{cases}
-\frac{1}{2} \sum_{k \neq i} \frac{|2E(\tilde{H}_1)_{ik}|^2}{(\lambda_i - \lambda_k)^2}, & i = j \\
\frac{1}{\lambda_i - \lambda_j} \sum_{k \neq i, j} \frac{2E(\tilde{H}_1)_{ik} 2E(\tilde{H}_1)_{kj}}{\lambda_k - \lambda_j}, & i \neq j
\end{cases}
\]

It is a little more complicated to confirm the scale of \(W_2 \).

- \(i = j \) if \(i = 4 \), the denominator will be \(\gtrsim \epsilon^{-2} \); if \(i = j \neq 4 \) and \(k \neq 4 \) the numerator will be \(\sim \epsilon^2 \); if \(i = j \neq 4 \) and \(k = 4 \), the denominator will be \(\gtrsim \epsilon^{-2} \);
- \(i \neq j \) if \(i, j, k \in \{1, 2, 3\} \), the numerator will be \(\sim \epsilon^2 \); if \(i = 4 \) or \(j = 4 \), the denominator will be \(\gtrsim \epsilon^{-1} \) and the numerator will be \(\sim \epsilon^{3/2} \); if \(k = 4 \), the denominator will be \(\gtrsim \epsilon^{-1} \) and the numerator will be \(\sim \epsilon \).
Review of the calculation process

Vacuum Rotations

\[\theta_{23}, \delta_{23} \rightarrow \text{sterile} \]

Matter Rotations

\[\tilde{\theta}_{13}, \alpha_{13} \rightarrow \tilde{\theta}_{12}, \alpha_{12} \]

Correction

\[\sim \mathcal{O}(\epsilon) \]

Perturbation Expantions

1st order

\[\sim \mathcal{O}(\epsilon^2) \]

2nd order

\[\sim \mathcal{O}(\epsilon^3) \]

\ldots
Precision test: active eigenvalues

Zeroth Order, NO

$\frac{|\Delta \lambda|}{\Delta m_{ee}^2}$ vs E (GeV)

- λ_1
- λ_2
- λ_3
Presion test: oscillation possibilities

$$\nu_\mu \rightarrow \nu_e, \text{ L}=1300(\text{km}), \text{ NO}$$

$$P_{SM, P_{3+1}, |\Delta P_{3+1}^{(0)}|, |\Delta P_{3+1}^{(1)}|, |\Delta P_{3+1}^{(2)}|}$$
Possibilities shift from the Standard Model

\[\nu_\mu \rightarrow \nu_e \]

\[P_{3+1}, \text{Normal Order} \]

\[P_{\text{SM}} - P_{3+1}, \text{Normal Order} \]
Possibilities shift from the Standard Model (Continued)

$$\nu_\mu \rightarrow \nu_\mu$$

![Heatmaps showing P_{3+1}, Normal Order and $|P_{SM} - P_{3+1}|$, Normal Order](image)
Possibilities shift from the Standard Model (Continued)

\(\nu_\mu \rightarrow \nu_\tau \)

\[P_{3+1}, \text{Normal Order} \]

\[|P_{SM} - P_{3+1}|, \text{Normal Order} \]
Resolve crossings of the 0th order eigenvalues in the active neutrino space (crossings to sterile eigenvalues require very high neutrino energy)

Exact in vacuum

Accurate enough for current/future experiment