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WHY DO WE NEED A DUNE-PRISM?

* In reality Alan Bross, this morning
Ndet

f GFe(E) * 0, T (E,) * TS (Ey, Erec) dE,

T'€C

We cannot factorize flux, cross-section and detector effects — “no easy
cancellations”.

The goal of DUNE-PRISM is to use the flux model to predict far detector event
rates with minimal cross-section model dependence.

Achieve this by collecting data at several off-axis angles, exposing the
detector to different fluxes.

®* A movable near detector!

This concept was initially developed in the context of T2K and Hyper-K
(NuPRISM/J-PARC E61).
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MEASURING NEUTRINO ENERGY
THE CALORIMETRIC CASE

® Calorimetric neutrino energy estimation is model dependent.

® Part of the neutrino energy will be carried by particles that

will go undetected.
® This will introduce model-dependent feed-down effects.

® Expect differences between neutrinos and antineutrinos.

EC = Ey+ ¢, + +

4 I

Sum over knock-out nucleons: /Sum over mesons: )
* Neutrons! * If undetected, ~m_ bias!
* How many? * How many?
* How is energy shared? * How is energy shared?

\_ gy ) \_ gy )
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NEAR DETECTOR CONSTRAINTS
AN EXAMPLE FROM WATER CHERENKOV

® Neutrino flux is different in far detector compared to near detector:
neutrinos oscillate!
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® This presents an additional difficulty in constraining neutrino interaction
models.

®* We only ever measure a combination of flux and cross-section.

® Multi-nucleon effects, for example, can smear reconstructed neutrino energy
into oscillation dip at far detector, biasing the measurement.

® But this is obscured by the flux peak at the near detector!
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CALORIMETRIC FEED-DOWN

® Significant feed-down effects due to “missing energy” in calorimetric
neutrino energy reconstruction.

®* Mis-modelling will lead to bias!
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® Look at fake data to study the impact of nucleon f(lnemq’rlcs mis-
modelling on oscillation analyses.
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20% MISSING PROTON ENERGY

® For each event generated with a nominal interaction model, scale proton
energy deposits in the LAr detector by 80%.

® Difference is given to neutrons.

® Difference in reconstructed energy spectra at on-axis LAr ND clearly seen.

* If we saw this in our data, we would tune our cross-section model to remove the
discrepancy. But would this “fix” the true to reconstructed energy relation?
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MULTIVARIATE REWEIGHTING

® Start with nominal MC.

® Look at multidimensional distribution of

observables.
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MULTIVARIATE REWEIGHTING

\' Apply -20% shift in proton deposited energy.

T
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v . H °
Changes E, . — E,_ relation.
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MULTIVARIATE REWEIGHTING

®* Reweight the distribution as a function of the observables.

® Recover multidimensional nominal distribution.

* E.. bias still present! —
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® Repeat for antineutrino mode.

® Effect on E, — E, . is much smaller.

MULTIVARIATE REWEIGHTING
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PROPAGATING THE MODEL

® To study the effect on
oscillation fits, we need to
propagate this model to far
detector.

® Also to off-axis near detector
stops, to demonstrate the
PRISM technique.

® Bin event weights in true
variables useful for describing
interaction models.

® Get smoothly varying functions!

®* MVA treats interaction modes
differently.

® Even though it doesn’t “know”
about them!
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2.0

PROPAGATING THE MODEL

® For this data set, use E, vs true L5

proton kinetic energy. 1.0

Q? [GeV?]

® Extract weights separately for v
and anti-v using FHC and RHC

on-axis near detector data. 4l s

0.5
2.0

®* Assume perfect charge o

separation.

® Do not reweight regions of the o

2.0

space that fall outside of the

ND acceptance. 15

® These events get weight = 1, 1.0

but 20% proton deposited
energy removed.

0.5
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IMPACT ON OSCILLATION AN

® Use CAFAna framework to
fit fake data at near and

far detector.

® Fitter assumes the nominal

model: get bias!

® Flux systematic parameters

fixed at nominal value.

® Get same results if

allowed to vary in the fit.

®* No large pulls on cross-
section parameters.

x2/NDF = 81.6/202
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sin 2(?)13

IMPACT ON OSCILLATION ANALYSIS

®* A good fit is achieved at the on-axis near and far
detectors, but significant biases are seen in the estimation

of oscillation parameters.
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DUNE-PRISM

®* What if we could use the same detector
to measure interactions in a (very)
different flux?

® Move the detector to an off-axis
position and take datal

* Get true to reconstructed energy maps
for a wide range of true™® energies. .~

“

* As given by the flux model.
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LOOK AT THE FAKE DATA THROUGH A PRISM

® Narrow fluxes at off-axis near detector positions give away the E, . — E,_.

true
mismodelling.

® Cross-section parameters in the model fitted to on-axis data didn’t move
much from nominal values, as intended.

®* Near detector best-fit prediction is significantly different from “observed”
fake data at 20 m off-axis.
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OFF-AXIS ANGLE SPANNING DETECTOR

x107

EngineeredSept2017, 120 GeV, 1.2 MW

6m_On Axis ~FHC v, ]
—RHC ¥, 1

o
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®* Moving the LAr near detector

horizontally (e.g., on rails) in a
direction transverse to the neutrino

beam would result in a PRISM.

®, (GeV'' cm2 per POT)
|U'8]
o

®* At 574 m from the target, a lateral
travel of around 33 m would cover

the range of fluxes necessary to get

(o8]
-

down to 2" oscillation maximum

energies.

o
O

Off-axis position (m)

®* Beyond 33 m flux shape doesn’t

[

®, (GeV™' cm?2 per POT)

p—
S

change much and flux drops rapidly.
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MOVING THE DETECTOR

® Several engineering questions under study.

®* Hall size optimization.

® Drive mechanism. i
s
®* What moves? Cryo system, other detectors...

A 51.8 m (15 px/m) s

Egress

Support
Space

Primary
Shaft

on-axis i max off-axis
[ 1 beam : beam
1mx1lm ' Secondary 3 m ! M. Wllklng
- : S off-axis —
7.6m 37m
(25 ft) (12 ft)
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Doa (M)

DATA DRIVEN OSCILLATION ANALYSIS
LINEAR COMBINATIONS

® The first step in producing a data-driven prediction for the far
detector is to mock-up a far detector oscillated flux using linear
combinations of flux predictions at different off axis positions.

Oscillated FD target flux

ND off-axis spectrum le—8 le—15
33 4.0

3.5 1

3.0 1

o (arb.)

x

0 5 10 0 2 6
E (GeV) E (GeV)

®* Can be written as a linear algebra problem: CDS-IDCJ- = CD,FD

® Solve for ¢
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DATA DRIVEN OSCILLATION ANALYSIS
LINEAR COMBINATIONS

T -1 T
* Solution given by ¢= {(d)ND) oD 4 FTF} (chD) oFD

* With Tikhonov regularization using a difference matrix I’

1e—8 Coefficients 1e—15 Oscillated FD flux fits
4.0 1
—— Target
47 3.5 4 ——— Regularized matrix inversion
—— Minuit fit
3.0
2 1
2.5
o
= 2.0
0 - -—
e
1.5
1.0 1
_2 p
0.5 U
—4 - 0.0
0 5 10 15 20 25 30 0 2 4 6 8 10
Doa (M) E (GeV)
D. Douglas

® Coefficients can be applied to data taken at the corresponding off-

axis position to form a prediction for event rate at the far detector.

®* Need to correct for differences in acceptance between near and far

detector as well as shortcomings in the linear combinations.
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DATA DRIVEN OSCILLATION ANALYSIS
LINEAR COMBINATIONS

® Can reproduce both disappearance dips with linear combinations for a wide

range of oscillation parameters.

® Beam uncertainties have a small effect on the linear combinations.

* Difficult to fit high energy bump completely.

® Region close to the dip is well reproduced — most important to control feed-down effects.
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HADRONIC CONTAINMENT

Active Volume
Veto region

Vertex selection
region

® A cut on activity on a veto region on
the sides of the LAr near detector is
used to remove events where the
hadronic system escapes the detector.

Hadr. shw.

® This introduces model-dependent loss
of efficiency for events at with vertices

Vertex desert

K

close to the veto region.

* Mitigate the effect by fiducializing the
volume, events outside the “vertex
desert” are removed from analysis Stopn  Stop ... Stop 2 Stop 1

samples.

* Geometric, data-driven, efficiency
correction method in early stages of

development.

beam

® This presents additional motivation for L. Pickering
a wider (7 m) LAr volume.
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Count

DUNE-PRISM OSCILLATION ANALYSIS

Put all of this together for a far detector event rate prediction.

® Linear combinations perform poorly at high energies (> 4 GeV) given that

we can’t access fluxes peaked at higher-than-on-axis energies.

Use traditional MC prediction to account for the flux difference.

®* Most of the prediction comes from near detector data — cross-section model
independent.

® Implementation of this technique in oscillation analysis framework ongoing.

* Stay tuned!
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SUMMARY AND PROSPECTS

® Understanding true to reconstructed energy relation is
crucial for precision long baseline oscillation

meadsurements.

® Given the wide flux at the near detector (much wider
than oscillation features) and undetected components in
the final states, energy reconstruction bias can go

unnoticed in an on-axis near detector.

®* Taking near detector data at off-axis positions reveals
reconstructed energy mis-modelling and allows for a

largely data-driven oscillation analysis.
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PLEMENTARY SLIDES




DUNE-PRISM SIMULATION

x107"®

G ", EngineeredSept2017, 120 GeV, 1.2 MW F

Simulate GENIE events in a large liquid argon volume ;E: FHC BT e 120 809
* 39x3x5m. gl 2

=

Divide large volume into 13 detector-sized (3 x 2 x 4 m) z

chunks, mimicking “stops” of a moveable detector. o

Define a veto region 50 cm from the detector edges in

all directions.

® Use this region to require hadronic system containment in

active volume: non-primary-lepton energy deposits in veto
region < 50 MeV.
2
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R R R R R R
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LOOK AT THE FAKE DATA THROUGH A PRISM

®* Narrow fluxes at off-axis near detector positions give away the E

mismodelling.

true — Erec

® Cross-section parameters in the model fitted to on-axis data didn’t move

much from nominal values, as intended.

®* Near detector best-fit prediction is significantly different from “observed”
fake data at 30 m off-axis.
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EVENT RATES

CClnc NClnc
Offset 10YPOT 1 contained pexit, T7* > 50MeV 5 ,
Vu  €4,0C | Vu/Vi Vu  €0,,CC | Y/ Vi ° "
Om 55 6.6E5 3% 1% || 5.3E6  22% 3% | 6.2E4 || 1.8E6
3 m 4.58 5.5E4 3% 1% 4.1E5  22% 3% | 5.0E3 || 1.4E5
6 m 4.58 5.8E4 4% 1% 3.0E5 22% 4% | 4.3E3 || 1.1E5
9 m 4.58 6.0E4 7% 2% 1.9E5  22% 4% | 3.4E3 || 7.5E4
12m  4.58 5984 12% 3% 1.1IE5  22% 5% | 2.5E3 || 5.2E4
I15m 4.58 54E4  18% 3% 6.2E4  20% 6% | 2.2E3 || 3.7E4
I8 m  4.58 4.6E4  22% 4% 3.8E4 18% 8% 1.7TE3 || 2.7E4
2lm  4.58 3.9E4 27% 5% 2.5E4  17% 9% 1.4E3 || 2.1E4
24m  4.58 3.1E4  30% 6% 1.7E4  16% 9% | 1.2E3 || 1.6E4
27m  4.58 2.6E4 32% 7% 1.2E4  15% 10% | 9.8E2 || 1.3E4
30m  4.58 2.1E4  33% ™% 9.6E3  16% 12% | 8.3E2 || 1.0E4
33m  4.58 1.7E4  35% 8% | 7.5E3  15% | 13% | 7.6E2 | 8.3E3
36 m  4.58 1.2E4  35% 8% 6.1E3  16% 15% | 6.7E2 | 6.6E3
Totals Yy — Uy Yy — Uy Ve Yy
All 110 1.1E6 — 1.6E4 || 6.5E6 — 2.2E5 | 8.7E4 || 2.3E6
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ON-AXIS NEAR DETECTOR

® Very little difference between nominal and fake data sets at

on-axis near detector.

units

000

rbitra

10000

8000

6000

4000

2000

Nominal
Fake
On-axis

ND

=

DUNE Collaboration Meeting

-1

2

3

4

5

6
Erec [GoV]

May 16,2018

29



FAR DETECTOR

® Different E. — E__significantly distorts far detector oscillated
\Y) rec g y

spectrum.

® This will induce bias in estimation of oscillation parameters!
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MULTIVARIATE REWEIGHTING

* Use multivariate method™ to reweight distributions of observables back to

nominal.

® Train BDT to learn differences between shifted and nominal MC, and produce

event weights from output.

Five observables considered, assume energy deposits can be unambiguously

assigned to particle species:
* E

* Defined as sum of non-lepton energy deposits in LAr detector plus true lepton energy.

®* No attempt to reconstruct Michel electrons and correct for energy taken by

neutrinos...
® Primary lepton energy
® Proton deposited energy
®* Charged pion deposited energy

® Neutral pion deposited energy
® This is a proxy for tuning a sufficiently flexible cross-section model.

*A. Rogozhnikov, J.Phys.Conf.Ser. 762 (2016) no.1, 012036 [arXiv:1608.05806]
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MULTIVARIATE REWEIGHTING

* Use Gradient Boosted Decision Tree event reweighting technique™.

®* Hyperparameters:

Tree splitting criterion: mean squared error
Number of estimators: 200

Maximum tree depth: 3

Minimum samples per leaf: 1000

Learning rate: 0.1

Loss regularization: 1

* Split MC sample in two: one half will be “Nominal” and the other

“Fake”.

® For training, use 75% of the Nominal and Fake samples, and check

result on the rest.

*arXiv:1608.05806
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IS AN ON-AXIS MPT SENSITIVE TO THIS
TYPE OF MISMODELLING?

® The proposed multi-purpose tracker will be able to measure tracks precisely
down to low thresholds.

®* Are we able to reweight kinematic-balance distributions measured by a MPT and
still get a biased E,_. model2 arXiv 1512.05748

* Add the following variables to the list of observables to be reweighted: 13'?1
®* Number of protons and charged pions above tracking threshold. -
®* For events with exactly one tracked proton and no tracked pions:

* Single transverse kinematics: dpy, da; and 5,
® For events with exactly one pion and one proton:

* Double transverse variable: dpq;

Tracking thresholds:
* Protons: 200 MeV /c
* Pions: 130 MeV /c

Momentum resolution: 5%

Angular resolution: 2 mrad - | arXiv 1512.09042
From STT document at ND workshop '
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TRANSVERSE VARIABLES, REWEIGHTED
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: TRANSVERSE VARIABLES,
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(AN ATTEMPT AT) A SANITY CHECK

* If we had complete knowledge of the final state for
every event we wouldn’t expect this type of reweighting
to work.

® Or at least not without somehow “correcting” the E___ response...

®* But how would that manifest itself in the distributions we

have been looking at?

®* Try reweighting initial five “calorimetric” variables plus
the true neutron kinetic energy, as if we had a 100%
efficient neutron detector with perfect resolution and
acceptance.

® That should constrain the final state quite tightly...
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(AN ATTEMPT AT) A SANITY CHECK

Five calorimetric variables.
. . . 10% Weights look reasonable.
* Distributions of observables o
don’t make a whole lot of i
sense, so look at 107}
distributions of event ol
weights. D J|" H
o . . ‘ I Vﬂ [l H
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10° ‘ ‘ : T 10°
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DUNE-PRISM 20 METRES OFF-AXIS

®* Fake and nominal data look different when looking at a

narrow flux at off-axis positions.
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