

DUNE as the Next-Generation Solar Neutrino Experiment

Shirley Li

arXiv: 1808.08232 Collaborators: F. Capozzi, G. Zhu, J. Beacom PONDD, December 2018

Outline

Why haven't we resolved this?

Outline

Why haven't we resolved this?

Solar neutrino spectra

Solar neutrino oscillation

The survival probability

Oscillation phenomena

6/27

Current status

New physics?

Friedland, Lunardini & Pena-Garay, 2004

Outline

Why haven't we resolved this?

What we want to measure

SNO: 1999 -- 2006

Both NC and CC channel

sno.phy.queensu.ca

Provides ⁸B ν flux: 4%

Super-K: 1996 -- present

ES channel only: $v_x + e \rightarrow v_x + e$

Super-K: 1996 -- present

Super-K: 1996 -- present

Outline

Why haven't we resolved this?

DUNE

4 10-kton liquid argon TPC module

sciencemag.org

- > Trigger
- \succ $T_e > 5 \,\mathrm{MeV}$
- Energy resolution 7%

Angular resolution 25°

Unique advantage of DUNE

CC channel: $\nu_e + Ar \rightarrow e + K^*$

Unique advantage of DUNE

CC channel:
$$\nu_e + Ar \rightarrow e + K^*$$

Unique advantage of DUNE

Event rate in DUNE

100 kton-year exposure

Results

Capozzi et al, 2018

In addition, ⁸B flux 2.5%, hep flux 10%

Solar neutrino in DUNE

Backgrounds

Capozzi et al, 2018

Three options:

- ~ 40 cm of water/plastic shielding
- 2. Double the exposure
- 3. Reconstruct neutrino energy

Threshold

Depends on reconstruction & background level

Can be compensated by larger exposure Shirley Li (SLAC)

Current uncertainty: a few %

Capozzi et al, 2018

Conclusions

Measured metallicities

Element	GS98	AGSS09met	
С	8.52 ± 0.06	8.43 ± 0.05	
Ν	7.92 ± 0.06	7.83 ± 0.05	
Ο	8.83 ± 0.06	8.69 ± 0.05	
Ne	8.08 ± 0.06	7.93 ± 0.10	
Mg	7.58 ± 0.01	7.53 ± 0.01	
\mathbf{Si}	7.56 ± 0.01	7.51 ± 0.01	
\mathbf{S}	7.20 ± 0.06	7.15 ± 0.02	
Ar	6.40 ± 0.06	6.40 ± 0.13	
Fe	7.50 ± 0.01	7.45 ± 0.01	
$(Z/X)_{\odot}$	0.02292	0.01780	

i	$\Delta E_i \; [{ m MeV}]$	$B_i(\mathbf{F})$	$B_i(GT)$
1	2.333		1.64
2	2.775		1.49
3	3.204		0.06
4	3.503		0.16
5	3.870		0.44
6	4.384	4.00	
7	4.421		0.86
8	4.763		0.48
9	5.162		0.59
10	5.681		0.21
11	6.118		0.48
12	6.790		0.71
13	7.468		0.06
14	7.795		0.14
15	7.952		0.97
total		4.00	8.29

Mass square sensitivity

PID

7% energy resolution

PID

20% energy resolution

Systematics

energy scale, energy resolution, shape

