DUNE-PRISM

PHYSICS OPPORTUNITIES AT THE NEAR DUNE DETECTOR HALL

FERMILAB

DECEMBER 3RD, 2018

* Stony Brook University

Gistóvão Vilela

WHY DO WE NEED A DUNE-PRISM?

In reality

Alan Bross, this morning

$$\frac{dN_{\nu}^{det}}{dE_{rec}} = \int \phi_{\nu}^{det}(E_{\nu}) * \sigma_{\nu}^{target}(E_{\nu}) * T_{\nu_{\mu}}^{det}(E_{\nu}, E_{rec}) dE_{\nu}$$

- We cannot factorize flux, cross-section and detector effects "no easy cancellations".
- The goal of DUNE-PRISM is to use the flux model to predict far detector event rates with minimal cross-section model dependence.
- Achieve this by collecting data at several off-axis angles, exposing the detector to different fluxes.
 - A movable near detector!
- This concept was initially developed in the context of T2K and Hyper-K (NuPRISM/J-PARC E61).

MEASURING NEUTRINO ENERGY THE CALORIMETRIC CASE

- Calorimetric neutrino energy estimation is model dependent.
- Part of the neutrino energy will be carried by particles that will go undetected.
- This will introduce model-dependent feed-down effects.
- Expect differences between neutrinos and antineutrinos.

$$E_{\nu}^{cal} = E_{\ell} + \epsilon_n + \sum_{i=1}^n (E_{p'_i} - M) + \sum_{j=1}^m E_{h'_j}$$

Sum over knock-out nucleons:
• Neutrons!
• How many?
• How is energy shared?
• How is energy shared?

NEAR DETECTOR CONSTRAINTS AN EXAMPLE FROM WATER CHERENKOV

• Neutrino flux is different in far detector compared to near detector: neutrinos oscillate!

- This presents an additional difficulty in constraining neutrino interaction models.
 - We only ever measure a combination of flux and cross-section.
- Multi-nucleon effects, for example, can smear reconstructed neutrino energy into oscillation **dip** at far detector, biasing the measurement.
 - But this is obscured by the flux **peak** at the near detector!

C. Vilela - PONDD

CALORIMETRIC FEED-DOWN

- Significant feed-down effects due to "missing energy" in calorimetric neutrino energy reconstruction.
 - Mis-modelling will lead to bias!

 Look at fake data to study the impact of nucleon kinematics mismodelling on oscillation analyses.

20% MISSING PROTON ENERGY

- For each event generated with a nominal interaction model, scale proton energy deposits in the LAr detector by 80%.
 - Difference is given to neutrons.
- Difference in reconstructed energy spectra at on-axis LAr ND clearly seen.
 - If we saw this in our data, we would tune our cross-section model to remove the discrepancy. But would this "fix" the true to reconstructed energy relation?

PROPAGATING THE MODEL

- To study the effect on oscillation fits, we need to propagate this model to far detector.
 - Also to off-axis near detector stops, to demonstrate the PRISM technique.
- Bin event weights in true variables useful for describing interaction models.
 - Get smoothly varying functions!
 - MVA treats interaction modes differently.
 - Even though it doesn't "know" about them!

PROPAGATING THE MODEL

- For this data set, use E_v vs true proton kinetic energy.
- Extract weights separately for v and anti-v using FHC and RHC on-axis near detector data.
 - Assume perfect charge separation.
- Do not reweight regions of the space that fall outside of the ND acceptance.
 - These events get weight = 1, but 20% proton deposited energy removed.

2.0

1.5

1.0

0.5

2.0

1.5

- 1.0

0.5

2.0

1.5

1.0

05

10

IMPACT ON OSCILLATION ANALYSIS

- Use CAFAna framework to fit fake data at near and far detector.
 - Fitter assumes the nominal model: get bias!
- Flux systematic parameters fixed at nominal value.
 - Get same results if allowed to vary in the fit.
- No large pulls on crosssection parameters.

```
\chi^2/NDF = 81.6/202
```


May 16, 2018

13

IMPACT ON OSCILLATION ANALYSIS

 A good fit is achieved at the on-axis near and far detectors, but significant biases are seen in the estimation of oscillation parameters.

DUNE-PRISM

- What if we could use the same detector to measure interactions in a (very) different flux?
- Move the detector to an off-axis position and take data!
- Get true to reconstructed energy maps for a wide range of true* energies.

* As given by the flux model.

LOOK AT THE FAKE DATA THROUGH A PRISM

- Narrow fluxes at off-axis near detector positions give away the $\rm E_{true} \rightarrow \rm E_{rec}$ mismodelling.
- Cross-section parameters in the model fitted to on-axis data didn't move much from nominal values, as intended.
- Near detector best-fit prediction is significantly different from "observed" fake data at 20 m off-axis.

OFF-AXIS ANGLE SPANNING DETECTOR

- Moving the LAr near detector horizontally (e.g., on rails) in a direction transverse to the neutrino beam would result in a PRISM.
- At 574 m from the target, a lateral travel of around 33 m would cover the range of fluxes necessary to get down to 2nd oscillation maximum energies.
 - Beyond 33 m flux shape doesn't change much and flux drops rapidly.

MOVING THE DETECTOR

- Several engineering questions under study.
 - Hall size optimization.
 - Drive mechanism.
 - What moves? Cryo system, other detectors...

DATA DRIVEN OSCILLATION ANALYSIS LINEAR COMBINATIONS

• The first step in producing a data-driven prediction for the far detector is to mock-up a far detector oscillated flux using linear combinations of flux predictions at different off axis positions.

DATA DRIVEN OSCILLATION ANALYSIS LINEAR COMBINATIONS

- Solution given by $\vec{c} = \left[\left(\Phi^{ND} \right)^T \Phi^{ND} + \Gamma^T \Gamma \right]^{-1} \left(\Phi^{ND} \right)^T \Phi_i^{FD}$
 - With Tikhonov regularization using a difference matrix Γ

• Coefficients can be applied to data taken at the corresponding offaxis position to form a prediction for event rate at the far detector.

• Need to correct for differences in acceptance between near and far detector as well as shortcomings in the linear combinations.

C. Vilela - PONDD

DATA DRIVEN OSCILLATION ANALYSIS LINEAR COMBINATIONS

- Can reproduce both disappearance dips with linear combinations for a wide range of oscillation parameters.
- Beam uncertainties have a small effect on the linear combinations.
- Difficult to fit high energy bump completely.
 - Region close to the dip is well reproduced most important to control feed-down effects.

HADRONIC CONTAINMENT

- A cut on activity on a veto region on the sides of the LAr near detector is used to remove events where the hadronic system escapes the detector.
- This introduces model-dependent loss of efficiency for events at with vertices close to the veto region.
- Mitigate the effect by fiducializing the volume, events outside the "vertex desert" are removed from analysis samples.
 - Geometric, data-driven, efficiency correction method in early stages of development.
- This presents additional motivation for a wider (7 m) LAr volume.

Active Volume

DUNE-PRISM OSCILLATION ANALYSIS

- Put all of this together for a far detector event rate prediction.
- Linear combinations perform poorly at high energies (> 4 GeV) given that we can't access fluxes peaked at higher-than-on-axis energies.
- Use traditional MC prediction to account for the flux difference.
 - Most of the prediction comes from near detector **data** cross-section model independent.
- Implementation of this technique in oscillation analysis framework ongoing.

Count

SUMMARY AND PROSPECTS

- Understanding true to reconstructed energy relation is crucial for precision long baseline oscillation measurements.
- Given the wide flux at the near detector (much wider than oscillation features) and undetected components in the final states, energy reconstruction bias can go unnoticed in an on-axis near detector.
- Taking near detector data at off-axis positions reveals reconstructed energy mis-modelling and allows for a largely data-driven oscillation analysis.

SUPPLEMENTARY SLIDES

DUNE-PRISM SIMULATION

- Simulate GENIE events in a large liquid argon volume
 - 39 x 3 x 5 m.

Y (m)

0

 $^{-1}$

- Divide large volume into 13 detector-sized (3 x 2 x 4 m) chunks, mimicking "stops" of a moveable detector.
- Define a veto region 50 cm from the detector edges in all directions.
 - Use this region to require hadronic system containment in active volume: non-primary-lepton energy deposits in veto region < 50 MeV.

-10

May 16, 2018

26

LOOK AT THE FAKE DATA THROUGH A PRISM

- Narrow fluxes at off-axis near detector positions give away the $\rm E_{true} \rightarrow \rm E_{rec}$ mismodelling.
- Cross-section parameters in the model fitted to on-axis data didn't move much from nominal values, as intended.
- Near detector best-fit prediction is significantly different from "observed" fake data at 30 m off-axis.

EVENT RATES

		CCInc							NCInc
Offset	10^{19} POT	μ contained			$\mu \text{ exit, } T_{\mu}^{\text{exit}} > 50 \text{MeV}$			1/2	1/
		$ u_{\mu} $	$\epsilon_{ u_{\mu}, { m CC}}$	$ar{ u}_{\mu}/ u_{\mu}$	ν_{μ}	$\epsilon_{ u_{\mu},{ m CC}}$	$ar{ u}_{\mu}/ u_{\mu}$	νe	ν_{μ}
0 m	55	6.6E5	3%	1%	5.3E6	22%	3%	6.2E4	1.8E6
$3 \mathrm{m}$	4.58	$5.5\mathrm{E4}$	3%	1%	$4.1\mathrm{E5}$	22%	3%	5.0E3	$1.4\mathrm{E5}$
6 m	4.58	$5.8\mathrm{E4}$	4%	1%	3.0E5	22%	4%	4.3E3	$1.1\mathrm{E5}$
9 m	4.58	6.0E4	7%	2%	1.9E5	22%	4%	3.4E3	7.5E4
$12 \mathrm{m}$	4.58	$5.9\mathrm{E4}$	12%	3%	$1.1\mathrm{E5}$	22%	5%	2.5E3	5.2E4
$15 \mathrm{m}$	4.58	$5.4\mathrm{E4}$	18%	3%	6.2E4	20%	6%	2.2E3	3.7E4
$18 \mathrm{m}$	4.58	$4.6\mathrm{E4}$	22%	4%	3.8E4	18%	8%	1.7E3	2.7E4
$21 \mathrm{m}$	4.58	3.9E4	27%	5%	$2.5\mathrm{E4}$	17%	9%	1.4E3	$2.1\mathrm{E4}$
$24 \mathrm{m}$	4.58	3.1E4	30%	6%	1.7E4	16%	9%	1.2E3	1.6E4
$27 \mathrm{m}$	4.58	$2.6\mathrm{E4}$	32%	7%	1.2E4	15%	10%	9.8E2	1.3E4
$30 \mathrm{m}$	4.58	2.1E4	33%	7%	9.6E3	16%	12%	8.3E2	1.0E4
$33 \mathrm{m}$	4.58	1.7E4	35%	8%	7.5E3	15%	13%	7.6E2	8.3E3
36 m	4.58	1.2E4	35%	8%	6.1E3	16%	15%	6.7E2	6.6E3
Totals		ν_{μ}		$\bar{ u}_{\mu}$	ν_{μ}		$ar{ u}_{\mu}$	$\nu_{\rm e}$	ν_{μ}
All	110	1.1E6		1.6E4	6.5E6		2.2E5	8.7E4	2.3E6

ON-AXIS NEAR DETECTOR

• Very little difference between nominal and fake data sets at on-axis near detector.

FAR DETECTOR

- Different $E_v \rightarrow E_{rec}$ significantly distorts far detector oscillated spectrum.
 - This will induce bias in estimation of oscillation parameters!

MULTIVARIATE REWEIGHTING

- Use multivariate method* to reweight distributions of observables back to nominal.
 - Train BDT to learn differences between shifted and nominal MC, and produce event weights from output.
 - Five observables considered, assume energy deposits can be unambiguously assigned to particle species:
 - E_{rec}
 - Defined as sum of non-lepton energy deposits in LAr detector plus true lepton energy.
 - No attempt to reconstruct Michel electrons and correct for energy taken by neutrinos...
 - Primary lepton energy
 - Proton deposited energy
 - Charged pion deposited energy
 - Neutral pion deposited energy

• This is a proxy for tuning a sufficiently flexible cross-section model.

*A. Rogozhnikov, J.Phys.Conf.Ser. 762 (2016) no.1, 012036 [arXiv:1608.05806]

DUNE Collaboration Meeting

MULTIVARIATE REWEIGHTING

- Use Gradient Boosted Decision Tree event reweighting technique*.
- Hyperparameters:
 - Tree splitting criterion: mean squared error
 - Number of estimators: 200
 - Maximum tree depth: 3
 - Minimum samples per leaf: 1000
 - Learning rate: 0.1
 - Loss regularization: 1
- Split MC sample in two: one half will be "Nominal" and the other "Fake".
- For training, use 75% of the Nominal and Fake samples, and check result on the rest.

*arXiv:1608.05806

IS AN ON-AXIS MPT SENSITIVE TO THIS TYPE OF MISMODELLING?

- The proposed multi-purpose tracker will be able to measure tracks precisely down to low thresholds.
- Are we able to reweight kinematic-balance distributions measured by a MPT and still get a biased E_{rec} model?
 arXiv 1512.05748
- Add the following variables to the list of observables to be reweighted: \vec{p}_{T}^{ℓ}
 - Number of protons and charged pions above tracking threshold.
 - For events with exactly one tracked proton and no tracked pions:
 - Single transverse kinematics: δp_T , $\delta \alpha_T$ and $\delta \varphi_T$
 - For events with exactly one pion and one proton:
 - Double transverse variable: δp_{TT}

Tracking thresholds:

- Protons: 200 MeV/c
- Pions: 130 MeV/c Momentum resolution: 5% Angular resolution: 2 mrad From STT document at ND workshop

per

 \vec{p}_{v}

TRANSVERSE VARIABLES, REWEIGHTED

DUNE Collaboration Meeting

TRANSVERSE VARIABLES, REWEIGHTED

DUNE Collaboration Meeting

May 16, 2018 35

DUNE Collaboration Meeting

(AN ATTEMPT AT) A SANITY CHECK

- If we had complete knowledge of the final state for every event we wouldn't expect this type of reweighting to work.
 - Or at least not without somehow "correcting" the E_{rec} response...
- But how would that manifest itself in the distributions we have been looking at?
- Try reweighting initial five "calorimetric" variables plus the true neutron kinetic energy, as if we had a 100% efficient neutron detector with perfect resolution and acceptance.
 - That should constrain the final state quite tightly...

(AN ATTEMPT AT) A SANITY CHECK

 Distributions of observables don't make a whole lot of sense, so look at distributions of event weights.

DUNE-PRISM 20 METRES OFF-AXIS

• Fake and nominal data look different when looking at a narrow flux at off-axis positions.

L. Pickering 13

Geometric efficiency correction

- Want to know: For an event of a given 'shape', if I selected X, how many did I veto because of my detector geometry and selection conditions.
- Might imagine an efficiency determination procedure like:
 - For a selected event, with full
 3D deposit mapped out by
 ArgonCube.
 - Make throws of translations and rotations around the beam axis.
 - How often would that event have still been selected?

