Quantum Monte Carlo calculations of Neutrino-Nucleus Interactions

PONDD Physics Opportunities in the Near DUNE Detector Hall

Alessandro Lovato

In collaboration with:
C. Barbieri, O. Benhar, J. Carlson, S. Gandolfi, W. Leidemann, G. Orlandini, M. Piarulli, N. Rocco, and R. Schiavilla
The Physics case

Neutrino-oscillation and 0νββ experiments
- Accurately measure neutrino-oscillation parameters
- Determine whether the neutrino is a Majorana or a Dirac particle
- Need for including nuclear dynamics; mean-field models inadequate to describe neutrino-nucleus interaction

Multi-messenger era for nuclear astrophysics
- Gravitational waves have been detected!
- Supernovae neutrinos will be detected by the current and next generation neutrino experiments
- Nuclear dynamics determines the structure and the cooling of neutron stars
The basic model

- In the low-energy regime, quark and gluons are confined inside hadrons. Nucleons can treated as point-like particles interacting through the Hamiltonian

\[H = \sum_i \frac{p_i^2}{2m} + \sum_{i<j} v_{ij} + \sum_{i<j<k} V_{ijk} + \ldots \]

- Effective field theories are the link between QCD and nuclear observables. They exploit the separation between the “hard” (M~nucleon mass) and “soft” (Q~exchanged momentum) scales.
The Argonne \(v_{18} \) is a finite, local, configuration-space potential controlled by \(~4300\) np and pp scattering data below 350 MeV of the Nijmegen database.

Three-nucleon interactions effectively include the lowest nucleon excitation, the \(\Delta(1232) \) resonance, and other nuclear effects.
The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

\[\nabla \cdot \mathbf{J}_\text{EM} + i[H, J^0_\text{EM}] = 0 \]

- The above equation implies that \(\mathbf{J}_\text{EM} \) involves two-nucleon contributions.
- They are essential for low-momentum and low-energy transfer transitions.
Quantum Monte Carlo

- Diffusion Monte Carlo methods use an imaginary-time projection technique to enhance the ground-state component of a starting trial wave function.

\[
\lim_{\tau \to \infty} e^{-\left(H-E_0\right)\tau} |\Psi_T\rangle = \lim_{\tau \to \infty} \sum_n c_n e^{-\left(E_n-E_0\right)\tau} |\Psi_n\rangle = c_0 |\Psi_0\rangle
\]

- Suitable to solve of A ≤ 12 nuclei with ~1% accuracy
The basic model of nuclear Physics

Realistic nuclear interactions + Nuclear ab-initio methods

Argonne v18 with Illinois-7
GFMC Calculations
24 November 2012

J. Carlson et al. RMP 87, 1067 (2015)

D. Lonardoni et al. PRL 120, 122502 (2018)

S. Pastore et al. PRC 97, 014606 (2018)
Lepton-nucleus scattering

Schematic representation of the inclusive cross section as a function of the energy loss.

\[
\frac{1}{\sigma_M} \frac{d^2\sigma}{d\Omega_e d\omega}
\]

Elastic peak

Discrete levels

Giant resonance

\[\omega_{q.e.} \sim \frac{q^2}{2m}\]

\[m_\pi\]

q.e. region

q

Courtesy of Saori Pastore
Lepton-nucleus scattering

The inclusive cross section of the process in which a lepton scatters off a nucleus can be written in terms of five response functions

\[
\frac{d\sigma}{dE_\ell' d\Omega_\ell} \propto \left[v_{00} R_{00} + v_{zz} R_{zz} - v_{0z} R_{0z} \\
+ v_{xx} R_{xx} \mp v_{xy} R_{xy} \right]
\]

- In the electromagnetic case only the longitudinal and the transverse response functions contribute

- The response functions contain all the information on target structure and dynamics

\[
R_{\alpha\beta}(\omega, q) = \sum_f \langle \Psi_0 | J^\dagger_\alpha(q) | \Psi_f \rangle \langle \Psi_f | J_\beta(q) | \Psi_0 \rangle \delta(\omega - E_f + E_0)
\]

- They account for initial state correlations, final state correlations and two-body currents
Lepton-nucleus scattering

- At low momentum transfer the space resolution of the lepton becomes much larger than the average NN separation distance (\(\sim 1.5 \text{ fm} \)).

- In this regime the interaction involves many nucleons \(\text{long-range correlations} \).

\[\lambda \sim q^{-1} \]

\[|\Psi_f\rangle = \sum c_{1p,1h}^f |\Psi_{1p1h}\rangle \]

- The giant dipole resonance is a manifestation of long-range correlations.
Lepton-nucleus scattering

- At (very) large momentum transfer, scattering off a nuclear target reduces to the sum of scattering processes involving bound nucleons → short-range correlations.

\[|\Psi_f\rangle \simeq |p_1\rangle \otimes |\Psi_f\rangle_{A-1} \]

\[|\Psi_f\rangle \simeq |p_1, p_2\rangle \otimes |\Psi_f\rangle_{A-2} \]

- Relativistic effects play a major role and need to be accounted for along with nuclear correlations (Non trivial interplay between them)

- Resonance production and deep inelastic scattering also need to be accounted for
Moderate momentum-transfer regime

- At moderate momentum transfer, the inclusive cross section can be written in terms of the response functions

\[R_{\alpha\beta}(\omega, \mathbf{q}) = \sum_f \langle \Psi_0 | J^\dagger_\alpha(\mathbf{q}) | \Psi_f \rangle \langle \Psi_f | J_\beta(\mathbf{q}) | \Psi_0 \rangle \delta(\omega - E_f + E_0) \]

- Both initial and final states are eigenstates of the nuclear Hamiltonian

\[H | \Psi_0 \rangle = E_0 | \Psi_0 \rangle \quad \quad \quad H | \Psi_f \rangle = E_f | \Psi_f \rangle \]

- As for the electron scattering on \(^{12}\text{C}\)

\[|^{12}\text{C}^*\rangle, |^{11}\text{B}, p\rangle, |^{11}\text{C}, n\rangle, |^{10}\text{B}, pn\rangle, |^{10}\text{Be}, pp\rangle \]

- Relativistic corrections are included in the current operators and in the nucleon form factors
Integral transform techniques

- The integral transform of the response function are generally defined as

\[E_{\alpha\beta}(\sigma, q) \equiv \int d\omega K(\sigma, \omega) R_{\alpha\beta}(\omega, q) \]

- Using the completeness of the final states, they can be expressed in terms of ground-state expectation values

\[E_{\alpha\beta}(\sigma, q) = \langle \Psi_0 | J_\alpha^\dagger(q) K(\sigma, H - E_0) J_\beta(q) | \Psi_0 \rangle \]
Lorentz integral transform (LIT)

- The Lorentz integral transform

\[K(\sigma, \omega) = \frac{1}{(\omega - \sigma_R)^2 + \sigma_I^2} \]

has been successfully exploited in the calculation of electromagnetic and neutral-weak responses.

MTI–III potential as function of the energy for momentum transfers

SONIA BACCA

Using the definition of the LIT, Eq. (3), and the proper-strength is the bremsstrahlung sum rule (BSR) to resolve such a structure. It is worthwhile to mention that a peak around the GDR of 21-22 MeV was determined in an electron-scattering experiment at 82 fm.

As done for the charge operator, we have expanded the transverse current operator into electric and magnetic structure.

Both from the Lanczos approach and integrating the theoretical photo-absorption cross section up to 100 MeV we obtain an agreement with data. This opens the way for interesting applications.

For Ca with the photoabsorption data of Ahrens et al., PRC 6, 064619 (2014), the Pazy Foundation, the MIUR No. 2012212), the Pazy Foundation, the MIUR (NSERC), the National Research Council of Canada, Physics, U.S. Department of Energy under Grants DE-SC0008499 (NUCLEI SciDAC collaboration), separating them also beyond the stability valley.

\[\Gamma_{\text{CS}}(\omega) = |\mu| e^{-\omega} \]

\[\sigma_{\gamma}(\omega) = \frac{1}{\delta^2} \left(1 - e^{-\omega/\delta} \right) \]

\[\sigma_{\gamma}(\omega) = \sigma_{\gamma}^{\text{theo}}(\omega) + \sigma_{\gamma}^{\text{exp}}(\omega) \]

\[\sigma_{\gamma}(\omega) = \frac{1}{\delta^2} \left(1 - e^{-\omega/\delta} \right) \]

\[\sigma_{\gamma}(\omega) = \sigma_{\gamma}^{\text{theo}}(\omega) + \sigma_{\gamma}^{\text{exp}}(\omega) \]

\[\sigma_{\gamma}(\omega) = \frac{1}{\delta^2} \left(1 - e^{-\omega/\delta} \right) \]

\[\sigma_{\gamma}(\omega) = \sigma_{\gamma}^{\text{theo}}(\omega) + \sigma_{\gamma}^{\text{exp}}(\omega) \]
Euclidean response function

Valuable information on the energy dependence of the response functions can be inferred from their Laplace transforms

\[E_{\alpha\beta}(\tau, \mathbf{q}) \equiv \int d\omega e^{-\omega\tau} R_{\alpha\beta}(\omega, \mathbf{q}) \]

At finite imaginary time the contributions from large energy transfer are quickly suppressed

\[
\begin{align*}
\text{The system is first heated up by the transition operator. Its cooling determines the Euclidean response of the system}\end{align*}
\]

\[E_{\alpha\beta}(\tau, \mathbf{q}) = \langle \Psi_0 | J_\alpha^\dagger(\mathbf{q}) e^{-(H-E_0)\tau} J_\beta(\mathbf{q}) | \Psi_0 \rangle \]

Same technique used in Lattice QCD, condensed matter physics…
The electromagnetic response of 12C

- We inverted the electromagnetic Euclidean response of 12C.
- Good agreement with data without in-medium modifications of the nucleon form factors.
- Small contribution from two-body currents.

Figure 1–2, showing a comparison between the experimental and theoretical data for 12C, $q=570$ MeV.
We inverted the electromagnetic Euclidean response of 12C

Good agreement with the experimental data once two-body currents are accounted for

Need to include relativistic corrections in the kinematics
\textbf{12C neutral-current cross-section}

- We computed the neutrino and anti-neutrino differential cross sections for a fixed value of the three-momentum transfer as function of the energy transfer for a number of scattering angles.
\textbf{12C neutral-current cross-section}

- The anti-neutrino cross section decreases rapidly relative to the neutrino cross section as the scattering angle changes from the forward to the backward hemisphere.

![Graphs showing \(\theta = 15^\circ \), \(\theta = 30^\circ \), \(\theta = 60^\circ \), and \(\theta = 120^\circ \) with plots of differential cross sections and energy spectra for neutrino and antineutrino interactions.](AL et al. PRC 97 022502 (2018))
For this same reason, two-body current contributions are smaller for the antineutrino than for the neutrino cross section.
Charged-current results

- We computed the charged-current response function of 4He

- Two-body currents have little effect in the vector term, but enhance the axial contribution at energy larger than quasi-elastic kinematics
Charged-current results

- We computed the charged-current response function of 4He

- Two-body currents have a sizable effect in the transverse response, both in the vector and in the axial contributions
Relativistic effects in a correlated system

- Non relativistic approaches are limited to moderate momentum transfers

- In a generic reference frame the longitudinal response reads

\[R_{fr}^{L} = \sum_{f} \left| \langle \psi_{i} | \sum_{j} \rho_{j}(q_{fr}, \omega_{fr}) | \psi_{f} \rangle \right|^{2} \delta(E_{fr}^{f} - E_{i}^{fr} - \omega_{fr}) \]

\[\delta(E_{fr}^{f} - E_{i}^{fr} - \omega_{fr}) \approx \delta(e_{fr}^{f} + (P_{fr}^{f})^{2}/(2M_{T}) - e_{i}^{fr} - (P_{i}^{fr})^{2}/(2M_{T}) - \omega_{fr}) \]

- The response in the LAB frame is given by the Lorentz transform

\[R_{L}(q, \omega) = \frac{q_{fr}^{2}}{(q_{fr})^{2}} \frac{E_{i}^{fr}}{M_{0}} R_{L}^{fr}(q_{fr}, \omega_{fr}) \]

where

\[q_{fr} = \gamma(q - \beta \omega), \quad \omega_{fr} = \gamma(\omega - \beta q), \quad P_{i}^{fr} = -\beta \gamma M_{0}, \quad E_{i}^{fr} = \gamma M_{0} \]
Relativistic effects in a correlated system

- The ^4He longitudinal response at $q=700$ MeV **strongly** depends on the original reference frame

N. Rocco et al. PRC 97 055501(2018)
Relativistic effects in a correlated system

- To determine the relativistic corrections, we consider a two-body breakup model

\[p_{fr}^f = \mu \left(\frac{p_{fr}^N}{m} - \frac{p_{fr}^X}{M_X} \right) \]
\[P_{fr}^f = p_{fr}^N + p_{fr}^X \]
\[\mu = \frac{mM_X}{m + M_X} \]
\[M_X = (A - 1)m + \epsilon_0^{A-1} \]

- The relative momentum is derived in a relativistic fashion

\[\omega_{fr} = E_{fr}^f - E_{fr}^i \]
\[E_{fr}^f = \sqrt{m^2 + (p_{fr}^f + (\mu/M_{A-1})P_{fr}^f)^2} + \sqrt{M_{A-1}^2 + (p_{fr}^f - (\mu/m)P_{fr}^f)^2} \]

- And it is used as input in the non-relativistic kinetic energy

\[\epsilon_f = \frac{p_f^2}{2\mu} + \epsilon_0^{A-1} \]

- The energy-conserving delta function reads

\[\delta(\omega_{fr} - E_{fr}^f(\epsilon_f) + E_{fr}^{0f}) = \left(\frac{\partial E_{fr}^f(\epsilon_f)}{\partial \epsilon_{fr}^f} \right)^{-1} \delta \left(\epsilon_f - \frac{p_f^2(\omega_{fr}, |q_{fr}^f|)}{2\mu} - \epsilon_0^{A-1} \right) \]
Relativistic effects in a correlated system

- The ^4He longitudinal response at $q=700\text{ MeV}$ mildly depends on the original reference frame.
Relativistic effects in a correlated system

- $E_e = 300$ MeV
 - $\theta = 60^\circ$

- $E_e = 300$ MeV
 - $\theta = 75^\circ$

- $E_e = 300$ MeV
 - $\theta = 90^\circ$

- $E_e = 300$ MeV
 - $\theta = 145^\circ$

- $E_e = 350$ MeV
 - $\theta = 60^\circ$

- $E_e = 500$ MeV
 - $\theta = 34^\circ$

Legend:
- exp
- 1b
- 12b
- 12b ANB

N. Rocco et al. PRC 97 055501(2018)
Relativistic effects in a correlated system

\[E_e = 500 \text{ MeV} \quad \theta = 60^\circ \]

\[E_e = 600 \text{ MeV} \quad \theta = 34^\circ \]

\[E_e = 600 \text{ MeV} \quad \theta = 60^\circ \]

\[E_e = 730 \text{ MeV} \quad \theta = 37^\circ \]

\[E_e = 961 \text{ MeV} \quad \theta = 37.5^\circ \]

\[E_e = 1108 \text{ MeV} \quad \theta = 37.5^\circ \]
Spectral function approach

Neglecting (for now) two-body currents and assuming the factorization of the final state

\[J^\mu \rightarrow \sum_i j_i^\mu \quad |\Psi_f\rangle \rightarrow |p\rangle \otimes |\Psi_f\rangle_{A-1} \]

The response function is sum of scattering processes involving individual bound nucleons

\[R_{\alpha\beta} = \int \frac{d^3k}{(2\pi)^3} dE P_h(k, E) \sum_i \langle k| j^{i\dagger}_\alpha|k + q\rangle \langle k + q| j^i_\beta|k\rangle \delta(\omega + E - e_{k+q}) \]

The spectral function yields the probability of removing a nucleon with momentum \(k \) from the ground state leaving the residual system with excitation energy \(E \).

\[P_h(k, E) = \sum_f \langle \psi^A_0|[[k] \otimes |\psi^A_{f-1}\rangle|^2 \delta(E + E^{A-1}_f - E^A_0) \]

Approximate spectral functions are based on electron scattering data and on the local-density approximation

\[P_h(k, E) = P_{h}^{1h}(k, E) + P_{h}^{corr}(k, E) \]
Neutrino-nucleus scattering

- We implemented vector and axial vector relativistic two-body currents in the factorization scheme.

- We developed an highly-parallel Monte Carlo integration code.

- No need to use approximations such that of the “frozen nucleons”.

- The calculation of the MEC current matrix elements is carried our automatically.

- Simplifies the use of a different version of the MEC.

- We employ the factorization of the two-body spectral function, related to

\[n(k_1, k_2) = n(k_1) n(k_2) + O\left(\frac{1}{A}\right) \]

- We are improving this approximation using the cluster-expansion formalism.

- Analogy with the “short-time approximation” and the “contact formalism”.

E. Hernandez et al. PRD 76, 033005 (2007)
We successfully compared the charged-current response functions of 12C with the results of I. Ruiz Simo, et. al, Journal of Phys. G 44, no. 6 (2017)

To this aim we approximated the two-body spectral function with that of the global relativistic Fermi gas model.
Neutrino-12C charged-current scattering

$\nu_{\mu} + ^{12}$C $\rightarrow \mu^- + X$

$E_\nu = 1$ GeV, $\theta_{\mu} = 30^\circ$

$E_\nu = 1$ GeV, $\theta_{\mu} = 70^\circ$

- Two contributions mostly affect the ‘dip’ region
- Meson exchange currents strongly enhance the cross section for large values of the scattering angle
Neutrino-12C charged-current scattering

$\bar{\nu}_\mu + ^{12}\text{C} \rightarrow \mu^+ + X$

$E_\nu = 1$ GeV, $\theta_\mu = 30^\circ$

$E_\nu = 1$ GeV, $\theta_\mu = 70^\circ$

• Two contributions mostly affect the ‘dip’ region

• Meson exchange currents strongly enhance the cross section for large values of the scattering angle
Neutrino-^{12}C charged-current scattering

\[\nu_\mu^{+12}\text{C} \rightarrow \nu_\mu^{} + X \]

\(E_\nu = 1 \text{ GeV}, \ \theta_\mu = 30^\circ \)

\[\nu_\mu^{+12}\text{C} \rightarrow \nu_\mu^{} + X \]

\(E_\nu = 1 \text{ GeV}, \ \theta_\mu = 70^\circ \)

- Two contributions mostly affect the ‘dip’ region
- Meson exchange currents strongly enhance the cross section for large values of the scattering angle
Neutrino-^{12}C charged-current scattering

- Two contributions mostly affect the ‘dip’ region
- Meson exchange currents strongly enhance the cross section for large values of the scattering angle
Spectral function approach

We extended the spectral function approach to include pion-production mechanisms

\[|\Psi_f\rangle \rightarrow |p\rangle \otimes |p_{\pi}\rangle \otimes |\Psi_f\rangle_{A-1} \]

Good agreement with experimental data, although some strength is missing in the Delta region

\[E_e = 730 \text{ MeV}, \theta_e = 37.0^\circ \]
Spectral function approach

We extended the spectral function approach to include pion-production mechanisms

$$|\Psi_f\rangle \rightarrow |p\rangle \otimes |p_\pi\rangle \otimes |\Psi_f\rangle_{A-1}$$

Good agreement with experimental data, although some strength is missing in the Delta region

$$E_e=620 \text{ MeV}, \ \theta_e=60.0^\circ$$
Summary and plans

Current status

• GFMC calculations of \(^{12}\text{C}\) electromagnetic responses in good agreement with experiments.

• Two-body currents enhance the electromagnetic, neutral- and charged-current responses.

• We devised a scheme to account for relativistic kinematics in the GFMC.

• We extended the factorization scheme to include relativistic two-body currents and (some) pion-production mechanisms.

GFMC Plans

• GFMC calculations of the charged-current neutrino and anti-neutrino scattering off \(^{12}\text{C}\).

• GFMC calculations of the spectral function of light nuclei.

\[
\int dE e^{-E\tau} P_h(k, E) \sim \frac{\langle \Psi_0 | a_k^\dagger e^{-(H-E_0)\tau} a_k | \Psi_0 \rangle}{\langle \Psi_0 | e^{-(H-E_0)\tau} | \Psi_0 \rangle}
\]

• Interference term in the factorization ansatz within the cluster expansion formalism.

• Extend the spectral function approach to account for the resonance production mechanism.