

Accelerator design and simulation

Michael Borland

December 6, 2018

Accelerator design increasingly relies on simulation

- Design of particle accelerators is both an art and a science
- The art of accelerator design relies on experience and an intuitive appreciation of physical limits and possibilities
- The predictive capability of modern simulations has demonstrated many times, for example
 - X-ray Free Electron Lasers, e.g., SLAC's Linac Coherent Light Source
 - Storage ring light sources, e.g., ANL's Advanced Photon Source (APS)
- Both physics and engineering aspects of accelerator design have benefited from remarkable improvements in simulation capabilities
- We'll briefly highlight ANL's capabilities
 - Simulation codes developed at ANL
 - Expertise with other simulation codes
 - Computational resources

Simulations are central to the APS Upgrade

- Massively parallel multi-objective genetic optimizer to develop physics design
- Design of complex multi-function magnets using 3D codes
- Simulation of collective behavior of high-charge, multi-bunch electron beams
- Simulation of vacuum system performance in response to synchrotron radiation
- Simulation of commissioning and operational performance
- Understanding and pushing intensity limits in the injector complex

Accelerator design can be elegant

- elegant general-purpose code (ANL) for linacs, transport lines, rings
 - Widely used code with about 90 citations per year
 - Runs on leadership-class facilities, desktops, laptops
 - Optimization of linear otpics, nonlinear properties, radiation integrals, tracking-derived properties
 - Simulation of errors and correction methods
 - 6D tracking (matrices, symplectic integration, ...)
 - Synchrotron radiation, gas scattering, Touschek scattering
 - Collective effects (wakes, cavity modes, beamloading, ions, CSR)
 - Feedback (rf cavities, bunch-by-bunch)
 - Easily extensible and in constant development
 - User forum for getting/giving help

6

Complex electromagnets must be designed in 3D

- Next-generation storage rings (APS-U) require high-strength electromagnets
 - Combined bending and focusing magnets (~100 T/m)
 - Sextupoles with steering correction capability
 - Fast steering magnets supporting feedback at ~1kHz
 - Five-segment longitudinal gradient dipoles
- Magnet designs must be integrated with vacuum system design to allow extraction of x-rays
- We "close the loop" by taking data from OPERA back into elegant to verify field distribution, quality

Images courtesy M. Jaski

Accelerator Design and Simulation

Large-scale vacuum systems can be accurately modeled

- Electron beams in the APS-U storage ring can be lost or disrupted by residual gas
- Gas is produced by photon-stimulated desorption from metal surfaces and pumped out by NEG and ion pumps
- This is modeled by the CERN codes SynRad+¹⁰ and MolFlow+¹¹

Accelerator Design and Simulation

Vacuum system model helps predict beam lifetime and stability

- Electron beams in the APS-U storage ring can be lost or disrupted by residual gas
- Gas is produced by photon-stimulated desorption from metal surfaces and pumped out by NEG and ion pumps
- This is modeled by the CERN codes SynRad+ and MolFlow+

- These results are used for follow-on simulations
 - Gas scattering lifetime and distribution of lost particles
 - Ion instabilities and suppression with bunch-train gaps
- Lost-particle distributions are fed into simulations of radiation levels outside the shield wall

Vacuum chamber interacts electromagnetically with beam

- Particle beams can suffer instabilities via EM interaction with vacuum chamber
 - Discontinuities in the chamber cross section are particularly troublesome
- Interaction can be characterized as a wake function using programs like GdfidL¹ and MWS²
- Wake functions can be used in particle tracking (e.g., elegant) to model beam stability
 - Predictions provide thresholds for instability, assessment of impact on operation

1: www.gdfidl.de 2: www.cst.com/products/cstmws Images courtesy R. Lindberg

Accelerator Design and Simulation

Other ANL resources and expertise

- Modeling of electron guns, including thermionic and photocathode guns
 - Codes include ASTRA¹, GPT², and spiffe³
- Modeling of low-energy linear accelerators with space charge effects
 - Codes include ASTRA and TRACK⁴
- Radiation safety
 - Codes include MARS⁵ and MCPN⁶
- Computing clusters
 - "Blues" cluster available for industrial users⁷

1: www.desy.de/~mpyflo

- 2: www.pulsar.nl/gpt
- 3: www.aps.anl.gov/Accelerator-Operations-Physics/Software
- 4: V. N. Aseev et al., Proc. PAC 2005, p 2053.
- 5: mars.fnal.gov
- 6: mcnp.lanl.gov
- 7: www.lcrc.anl.gov.

ANL codes permit rapid development of physics designs

- An idea (J. Byrd) for a new application of storage rings was a figure-eight ring to provide two-view hard x-ray imaging
- Concept explored from linear optics to basic collective effects in a few weeks

