PHYSICS PROSPECTS

Takeo Moroi (Tokyo)

2019.04.16 @ Hawaii

Introduction

Current situation

· All the SM particles have been discovered

Properties of particles are mostly consistent with SM predictions

SM is not enough

What kind of new physics?

I don't know …

→ We should consider various possibilities

Today, I will talk about …

- Higgs studies
- · Beyond-the-SM (BSM) at future colliders
- $\cdot\,$ CMB, gravitational waves, and inflation

Higgs studies

Higgs discovery (2012)

Higgs physics: from the discovery to precision studies

Parameter normalized to SM value

[ATLAS-CONF-2019-005] [CMS Collaboration 1809.10733]

→ Currently, Higgs looks like the SM Higgs

Is the Higgs really the SM Higgs?

Detailed study of Higgs properties is important

- → Future colliders may precisely measure Higgs couplings to other particles
- ➡ Effects of the BSM physics may be imprinted in Higgs properties

Higgs coupling measurements with e⁺e⁻ colliders

General two Higgs doublet model

Deviation from the predictions of the SM (tree level)

Loop effects of SUSY particles

SUSY loop correction to the couplings

- → Deviation from the Type-II structure
- → Non-decoupling effect

Decay rate of h in the MSSM

Maximal possible deviations of Higgs decay rates

Higgs physics is important

We should study the Higgs boson in detail

- → A signal of BSM may be imprinted in Higgs properties
- → e⁺e⁻ colliders (like ILC, FCC-ee, CEPC) can play important role in Higgs studies (so let's go for it)

BSM (SUSY) at future colliders

Example: SUSY

No (apparent) sign of BSM physics at the LHC yet→ The energy of may not be high enough to find BSM

Let's consider 100TeV pp collider (FCC-hh)

Reaches for gluino (and LSP): LHC vs. FCC-hh

3TeV Wino LSP is attractive

Wino (\widetilde{W}^{\pm} and \widetilde{W}^{0}): superpartners for SU(2) $\rightarrow \widetilde{W}^{0}$ is slightly lighter ($\Delta m_{\widetilde{W}} \simeq 160 \text{ MeV}$)

→ Let me discuss what we can do in such a scenario

Wino @ FCC-hh (with Drell-Yan)

- Lifetime of \widetilde{W}^{\pm} : ~ 0.2 nsec
- $\rightarrow \widetilde{W}^{\pm}$ may fly ~ 5 10cm
- → W[±] can be identified as disappearing high-P_T track

Gaugino mass determinatons

Gaugino masses from gluino pair production process

- Wino: momentum + velocity
- · Bino: invariant mass of \widetilde{W}^{\pm} + W^{\pm}
- · Gluino: invariant mass of \widetilde{W}^{\pm} + jets (of one side)

Gaugino mass measurements @ FCC-hh: an example

[Asai et al. 1901.10389]

Wino LSP is naturally realised in anomaly-mediation [Randall, Sundrum; Giudice, Luty, Murayama, Rattazzi]

→ Gravitino mass may be determined

FCC-hh is an interesting possibility

FCC-hh gives new possibilities for BSM study

- → Discovery reach is extended
- → Detailed studies of BSM particles are also possible (if they are discovered)

CMB, GW, and inflation

Inflation

Inflation: accelerating expansion of the universe

- Solution to horizon and flatness problems
- Origin of the density
 fluctuation of the universe

Gravitational wave (GW) from inflation

During inflation, gravitational field fluctuates

$$g_{ij} = -a^2(\delta_{ij} + h_{ij})$$

Fluctuation of GW (i.e., transverse-traceless mode)

$$\langle \tilde{h}_{\mathrm{TT}}^2(\vec{k}) \rangle = \frac{2}{M_{\mathrm{Pl}}^2} \left(\frac{H_{\mathrm{inf}}}{2\pi} \right)^2 \text{ where } \begin{cases} k_i \tilde{h}_{\mathrm{TT},ij}^2 = 0\\ \tilde{h}_{\mathrm{TT},ii}^2 = 0 \end{cases}$$

$$H^2_{\rm inf} = \frac{({\rm Energy\,density})}{3M_{\rm Pl}^2} : {\rm Expansion\,\,rate\,\,during\,\,inflation}$$

No sign of inflationary GW yet

GW from inflation makes CMB polarized

Detailed study of the CMB polarization is important

E-mode and B-mode polarization

→ B-mode is more important to study inflationary GWs

After the discovery of B-mode …

We can study the spectrum of inflationary GW

$$\ddot{\tilde{h}}_{\alpha}(\vec{k}) + 3H\dot{\tilde{h}}_{\alpha}(\vec{k}) + \left(\frac{k}{a}\right)^2 \tilde{h}_{\alpha}(\vec{k}) \simeq 0$$

GW spectrum (for modes entering the horizon in RD)

$$\frac{d\rho_{\rm GW}}{d\ln k} \sim \rho_{\rm rad} \times \frac{1}{3M_{\rm Pl}^2} \left(\frac{H_{\rm inf}}{2\pi}\right)^2$$

Spectrum of inflationary GW

Almost flat spectrum at high frequency (assuming RD)

Spectrum of inflationary GW depends on thermal history

Sharp drop-off due to the reheating after inflation

Satellite-based GW detector

→ Discovery of the B-mode is the first step, because it fixes the normalization of the GW flux

Discovery of inflationary B-mode has great impact

With the discovery of the B-mode, we obtain

- Energy scale of inflation
- Flux of inflationary GW

Summary

Backups

Higgs coupling measurements with e⁺e⁻ colliders

[Ann et al., 1810.09037]

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	CEPC ₂₅₀	FCC-ee ₂₄₀₊₃₆₅		
Lumi (ab^{-1})	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{ m HTT}/g_{ m HTT}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
$\delta g_{ m H}\mu\mu/g_{ m H}\mu\mu$ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{\rm H}\gamma\gamma/g_{\rm H}\gamma\gamma$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	-	-	-	-	-	-	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0

[CERN-ACC-2018-0057]

Two Higgs doublet model (2HDM)

Physical degrees of freedom: h, $\Phi = (H^0, A, H^{\pm})$

- Direct searches of heavy Higgses may be challenging
- Detailed study of the Higgs may give us hints

e⁺e⁻ colliders may find a deviation from SM prediction

Fraction of points on which ILC observes a deviation

E-mode signal

[Hu, Dodelson ('02)]

[Planck 2018]

Other interesting issues

Neutrino mass: Majorana or Dirac?

- → Understandings of the origin of neutrino mass
- → Important check point of leptogenesis

Neutrino: CP Violation

- $\sin \delta_{CP} = 0$ is disfavored
- Normal order is preferred (posterior odds of 7.9)

→ Hyper-Kamiokande and DUNE will come

Muon g-2

→ Results of FermiLab and J-PARC-KEK experiments will (hopefully) come out soon

DM direct detection

- → Stringent constraints on WIMP DM models
- → Need new ideas to go beyond the neutrino floor

Axion

[ADMX Collaboration ('18)]

→ Touching the parameter region of QCD axion