Ongoing Projects: Neutrinos

Elizabeth Worcester (BNL) 40th Anniversary Symposium of the US-Japan Science and Technology Cooperation Program in HEP April 15, 2019

Overview

- Introduction and caveats
- Long-baseline neutrino oscillation experiments
- Ongoing US-Japan research efforts:
 - T2K-NOvA joint analysis '
 - Liquid argon TPC R&D
- "R&D for current & future long-baseline experiments"
- 3D neutrino detector R&D
- Multi-PMT photosensor R&D
- High power neutrino beams R&D

Overview

- Introduction and caveats
- Long-baseline neutrino oscillation experiments
- Ongoing US-Japan research efforts:
 - T2K-NOvA joint analysis '
 - Liquid argon TPC R&D
- "R&D for current & future long-baseline experiments"
- 3D neutrino detector R&D
- Multi-PMT photosensor R&D
- High power neutrino beams R&D

Neutrino Oscillation

- Neutrinos have non-zero mass
- Mass states are not the same as the flavor states; flavor states may be written as linear combination of mass states (and vice versa) using a mixing matrix → oscillation!

$$\left|\nu_{\alpha}\right\rangle = \sum_{k} U_{\alpha k} \left|\nu_{k}\right\rangle$$

- Open questions in 3v model:
 - What are the neutrino masses?
 - Dirac or Majorana?
 - How are the neutrino masses ordered?
 - Does θ₂₃ = 45° exactly? New symmetry? If not, octant?
 - CP violation in neutrino oscillation ($\delta_{CP} \neq 0, \pi$)?

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

v_e Appearance

 v_e appearance amplitude depends on: $\theta_{13}, \theta_{23}, \delta_{CP}$, and matter effects

6

Current Long-Baseline Experiments

T2K: Tokai to Kamioka

- Beam: J-PARC (KEK)
- Far detector: SuperK
 - WCD (50 kt)
- Baseline: 295 km
- Far detector located off-axis such that observed v flux is peaked at ~600 MeV

NOvA: FNAL to Ash River

- Beam: NuMI (FNAL)
- Far detector: segmented liquid scintillator detector (14 kt)
- Baseline: 810 km
- Far detector located off-axis such that observed v flux is peaked at $\sim 2 \text{ GeV}$

Future Experiments c. 2026

T2HK: Tokai to HyperK

- Beam: J-PARC (KEK)
- Far detector: HyperK
 - WCD (190 kt fiducial)
 - Option for 2nd tank at same baseline or in Korea
- Baseline: 295 km

8

• Far detector located off-axis such that observed ν flux is peaked at ~600 MeV

DUNE: FNAL to SURF

- Beam: LBNF (FNAL)
- Far detector: LArTPC
 - 40 kt fiducial
- Baseline: 1300 km
- Far detector located on-axis such that observed v flux is a broad band spectrum

T2K-NOvA Status

US-Japan Symposium 2019: Elizabeth Worcester

9

T2K-NOvA Complementarity

- Baseline: Effect of mass ordering larger in NOvA than T2K because of longer baseline
 - 810 km vs 295 km
 - Detector technologies
 - Different sensitivity to final state particles
 - Different target nuclei
 - Different ND strategy
- Beam Spectrum
 - Different mix of neutrino interaction processes

 v_e CC events

US-Japan Symposium 2019: Elizabeth Worcester

•

T2K-NOvA Joint Analysis

Joint effort underway to fully exploit complementarities to achieve best combined reach in current generation of experiments

- Four joint meetings since 2016
 - Increasing levels of focus and participation, and of support from US-Japan program
- First formal joint workshop in Tokai, October 2017
 - "Role of Neutrino Interaction Uncertainties in Oscillation Measurements"
- 2nd workshop at Fermilab, February 2019
 - Identify important correlations in systematic uncertainty
 - Develop means/tools to share information and study correlations

- Future Plans
 - Meet every 6-9 months to continue laying framework for joint fits
 - Targeting first joint fits in 2021; scope of fits to be defined summer 2020

Liquid Argon TPC (Far detector technology for DUNE)

 Prompt scintillation light (128 nm) observed by photon detectors

 Ionization electrons drift to anode

LArTPC R&D

JFY2018-19 Plan

Development of innovative light signal readout system **(US)**

• ARAPUCA design:

- Actively ganged MPPC/ SiPM arrays
- Dichroic filters to improve photocollection efficiency

• Prototype tests

Improve HV feedthrough design and HV drift technology (Japan and US)

- New materials for HV feedthrough fabrication
- Improvements to HV design to reduce risk of discharge

Development of charge signal readout system (Japan)

- Charge readout design:
 - Large area GEM and PCB-based anode readout technology
 - Charge readout electronics
 - Charge signal feedthrough

ARAPUCA Light Detection

ARAPUCA: light is trapped using wavelength shifters and a dichroic filter; trapped light read out by SiPMs

protoDUNE:

3D-projection Scintillator Tracker (3DST) (ETW is US PI)

- Fully active detector
- Plastic scintillator + WLS fiber + MPPC
- 1x1x1 cm³ scintillator cubes assembled in rows and columns
- Provide 3D projected views w/ fine segmentation
- 4π acceptance w/ low momentum threshold for protons (~300 MeV)
- Neutron detection and energy measurement

3DST R&D

CERN beam tests

- 5x5x5 cm³ array (2017)
- 8x24x48 cm³ array (2018)

US-Japan prototype

- 8x8x32 cm³ supported by US-Japan program
- BNL, CERN, Geneva, INR, LSU, KEK, Penn, Pitt, Rochester, Stony Brook, Tokyo
- Proposed neutron beam test at LANL (2019)
 - CERN prototype + US-Japan prototype
 - Proposal submitted March 2019

3DST Applications

T2K near detector upgrade

- ND280 being upgraded to reduce systematic uncertainties in T2K oscillation analysis
- Improve angular acceptance, increase target mass, improve efficiency for short tracks
- "SuperFGD" is a 3DST detector

DUNE near detector design concept

- Modular LArTPC
- Magnetized multipurpose detector (HPgTPC+ECAL)
- 3DST spectrometer
- Design concept → conceptual design in progress
- Measurements of neutron spectrum

A highly segmented Scintillator Detector (SuperFGD is the baseline technology) TOF planes all around No changes to the downstream detectors, nor the Ecal

US-Japan Symposium 2019: Elizabeth Worcester

•

3DST Global Strategy

- Synergy between T2K ND280 upgrade (SuperFGD) and DUNE ND (3DST)
 - Use US-Japan support to seed international effort on both
- US-Japan 2018 proposal
 - Approved in April 2018
 - Build a US-Japan prototype for neutron beam test
 - Develop US expertise/experience with this detector technology
- 2018 US HEP Portfolio Review
 - T2K upgrade (including SuperFGD) received highest priority classification
- DUNE Near Detector
 - Design concept including 3DST adopted by DUNE Executive Board (2018)
 - Design concept → Conceptual Design in progress
- US contribution to T2K SuperFGD proposal (~\$1M US) submitted to DOE in January 2019
- US contribution to DUNE ND proposal being developed; to be submitted in 2019
 US-Japan Symposium 2019: Elizabeth Worcester

Multi-PMT Detector (mPMT)

- Single module containing 19 3-inch-diameter PMTs
 - Improved spatial and timing resolution

19

- Improved S/N compared to SuperK PMTs
- Readout electronics and high voltage circuits contained in the module

Water-tight vessel must be compatible with ultra-pure water and pressure tolerant

Pressure & HV Testing

- Hydrostatic pressure test in Kamioka up to 1.7 Mpa
 - No damage to acrylic dome
 - Strain gauge data collected and being analyzed
- Second pressure test with full design for module vessel
 - 3D-printed PPS cylinder
 - Stainless steel backplate
- Working with Hamamatsu to design positive HV Cockcroft Walton base
 - Gain measurements in progress

Steel backplate

US-Japan Symposium 2019: Elizabeth Worcester

Dark & Flashing Rate Tests

MSU Test Stand:

Tests with positive and negative polarity bases confirm dark noise rate & flasher rate (Work ongoing) 21 US-Japan Symposium 2019: Elizabeth Worcester

Reconstruction for mPMTs

• Vertex resolution improvement seen in small water Cherenkov tank populated with mPMTs compared to 8" PMTs

• Work is ongoing to more precisely incorporate directional information provided by mPMTs into advanced reconstruction algorithms (eg: FiTQun)

High-Power Neutrino Beams

- Next-generation facilities being designed to accommodate MW scale beam power in the DUNE/HyperK era
 - Minimize beam loss in the accelerator ring to keep radiation effects manageable
 - Increase capacity of neutrino production facility (robustness of target/horn, radioactive equipment/waste handling)
- Consortium includes Colorado, FNAL, KEK, SLAC
 - Grew out of existing areas of research of mutual interest to FNAL and J-PARC
 - In-person meetings Tokai 2018, FNAL 2019, several technical visits 2018-2019

US-Japan Symposium 2019: Elizabeth Worcester

Seven Core Research Areas

- Beam dynamics studies for beam loss reduction
 - New approaches to linac and synchotron lattice optimization and measurements to decrease high-intensity beam loss
- Electron cloud studies
 - Measurements and simulation of beam instability caused by free electrons in beam pipe (new 2019)
- Gated ionization profile monitor
 - IPM measures beam width. Research into gating would allow much longer lifetime in accelerator, and thus greater ability
- Laser manipulation of H- beams
 - Stripping of beam in linac and at injection. Enable flexible beam patterns and eliminate a loss source. Develop options for beam shaping and instrumentation (A. Seryi)

BPM Data Acquisition System

• New system to rapidly acquire large amounts of data. Will allow a new level of precision and feedback to the J-PARC Main Ring, exploiting Fermilab expertise (new 2019)

Extracted beam monitoring

• Allow spill-to-spill beam profile measurements in extraction lines, and allow long lifetime of the devices and minimal radioactivation. Present work on multiwire SEMs and OTR foils. Interest in gaseous devices.

High-power target facility issues

• Radiation-resistant materials to seal the gas volumes around the beamlines. Sealed and cools stripline for horn current conductors and feedthroughs.Recombination of water and hydrogen from hydrolysis.

Joint KEK-FNAL Beam Monitor R&D

- Essential to continuously monitor the proton beam to protect beamline equipment and understand the proton beam parameters for flux prediction
- Profile monitors may degrade quickly at 1.3 MW

Tip (In Beam)/Ti3 (Spare) Prob 0.9829 0 0.972 ± 0 0 0 0.9 0 0.972 ± 0 0 0.9 0.9 0.9972 ± 0 0 0.9 0.9 0.9972 ± 0 0 0.9 0.9 0.9972 ± 0 0 0.9 0.9972 ± 0 0 0 0.9 0.9 0.9 0 0.9 0.9 0.9 0 0.9 0.9 0.9 0 0.9 0.9 0.9 0 0.9 0.9 0.9 0 0.9 0.9 0.9 0 0.9 0.9 0.9 0 0.9 0.9 0.9 0 0.9

Irradiated OTR monitor (T2K)

- Design more robust SSEMs using less material
 - Reduced beam loss/irradiation
 - (FNAL) C ribbons may be more robust than (T2K) Ti foils
 Collaborative work to
 - modify FNAL SSEM design to fit T2K beam

FNAL Ti wire c-frame SEM

Summary

- US and Japan have very exciting current and planned experimental programs to make (complementary) precision measurements of parameters governing long-baseline neutrino oscillation
 - T2K and NOvA producing great results
 - Effort for combined analysis underway
 - HyperK and DUNE coming soon!
- US-Japan program facilitating analysis efforts and detector/ accelerator R&D that will benefit programs in both countries
 - mPMTs: HyperK
 - LArTPC: DUNE
 - 3DST: T2K & DUNE
 - High-power beams: All experiments

Thank you!

Slides provided by:

- Steve Brice
 Chang Kee Jung
 Mike Wilking
- Flavio Cavanna
 Kendall Mahn
 Bob Zwaska
- Mark Hartz
 Peter Shanahan

