

Charged Lepton Flavor Physics

Satoshi Mihara KEK/J-PARC/Sokendai

Session for research topics for future

Outline

Introduction

- CLFV physics with DC muon beam
- CLFV physics with pulsed muon beam
- CLFV physics with tau leptons
- Schedule and summary

Introduction

Charged Lepton Flavor Violation

Unravelling the mysteries of matter, life and the universe.

EXERNMENT REACTION FLORE Charged Lepton Flavor

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) < 10⁻⁵⁰
 - No SM Physics Background
 - Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM

- $\mu \rightarrow ex$
 - MEG Br($\mu \rightarrow e_x$) < 4.2x10⁻¹³
- µ→eee
 - SINDRUM BR(μ →eee) < 1.0x1 0⁻¹²
- μ -e conversion
 - SINDRUM II R(μ -e: Au) < 7x1 0⁻¹³

- $\mu \rightarrow ex$
 - MEG Br($\mu \rightarrow e_x$) < 4.2x10⁻¹³
- µ→eee
 - SINDRUM BR(μ →eee) < 1.0x1 0⁻¹²
- μ -e conversion
 - SINDRUM II R(μ -e: Au) < 7x1 0⁻¹³

PSI Ring Cyclotron 590MeV, 1.4MW

• SINDRUM II R(μ -e: Au) < 7x1 0⁻¹³

CLFV Physics with DC muon beam

Target Sensitivity : 6x10-14 in 3 years running

KEK Unravelling the mysteries of

Z

 $\mu \rightarrow eee$ at 10⁻¹²

 $\mu \rightarrow eee$ at 10⁻¹³

 $\mu \rightarrow eee$

at 10⁻¹⁴

 $\mu \rightarrow eee$ at 10⁻¹⁵

Combinatorial Bkg

Additional suppression

due to Timing detectors

• Another channel sensitive to cLFV with DC muon beam 1.0x1 0⁻¹² (90% C.L.) by SINDRUM Goal : 10⁻¹⁶ in 2 steps Signal Acc. Overlap Σp=0 Σp+0 Measure all electron tracks ∆t=0 ∆t+0 e+ with extreme precision **Background source** Mu3e Phase I 10² Events per 0.2 MeV/c² • $\mu^* \rightarrow e^* e^* e^- \overline{\nu} \nu$ 10 $\rightarrow eeev\overline{v}$ Accidental overlap 10^{-1} 10^{-2} Beamline is shared with Irreducible Bka 10⁻³ MEG II 96 98 106 108 110 100 102 104 m_{rec} [MeV/c²]

Wiravelling the myteries of matter, life and the universe etector Preparation

Mu3e Status

- Moving from R&D phase to construction phase
 - Ready for production in 2019
- Reverses door New controlled access door Rear access Detector control barracks New Controlled Rear access Detector control barracks New Controlled Rear access Detector control barracks New Controlled Rear access New Control New Control New Con
 - Detector construction in 2020
- Commissioning start in 2021

CLFV Physics with pulsed muon beam

Mu-e conversion

- Atomic capture of $\mu^{\text{-}}$

- μ⁻→e⁻ν̄_eν_µ
- electron gets recoil energy
- Capture by nucleus $\mu^{-+}(A,Z) \rightarrow \nu_{\mu}^{+}(A,Z^{-1})$
 - resultant nucleus is different
- $\tau_{\mu}^{Q} < \tau_{\mu}^{free} (\tau_{\mu}^{Al} = 860 \text{ nsec})$
- μ -e conversion $\mu^{-+(A,Z) \rightarrow e^{-+(A,Z)}}$
- $E_{\mu e}$ (AI) ~ m_{μ} - B_{μ} - E_{rec} =104.97MeV

– B_{μ} : binding energy of the 1s muonic atom

µ-e Conversion Signal and Background

- Signal
 - Electron from the muon stopping target with a characteristic energy with a delayed timing
- Background
 - Decay in Orbit Electron
 - Radiative muon capture
 - Cosmic-ray
 - Anti-protons
 - ullet and others

Tiny leakage of protons in between consecutive pulses can cause a background through Beam Pion Capture process:

$$\pi^{-}+(A,Z) \rightarrow (A,Z^{-}1)^{*} \rightarrow \gamma^{+}(A,Z^{-}1)$$

 $\gamma^{-} \rightarrow e^{+}$

Number of protons between pulses

e-

Number of protons in a pulse

US-Japan meeting, 15-16 April, 2019 at Univ. of Hawaii

Rext=

More Muons

- Pion production in magnetic field
- Pion/muon collection using gradient magnetic field
- Beam transport with curved solenoid magnets

ISSN 1063-7788, Physics of Atomic Nuclei, 2010, Vol. 73, No. 12, pp. 2012–2016. C Pleiades Publishing, Ltd., 2010. Original Russian Text C R.M. Djilkibaev, V.M. Lobashev, 2010, published in Yadernaya Fizika, 2010, Vol. 73, No. 12, pp. 2067–2071

> ELEMENTARY PARTICLES AND FIELDS Experiment

Search for Lepton-Flavor-Violating Rare Muon Processes

R. M. Djilkibaev* and V. M. Lobashev**

Institute for Nuclear Research, Russian Academy of Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow, 117312 Russia Received March 26, 2010; in final form, July 12, 2010

- Momentum and charge separation
- Same scheme used in COMET Phase-II electron spectrometer

COMET at J-PARC

J-PARC Facility (KEK/JAEA)

Neutrino beam to Kamioka

- 10000

Material and Life Science Facility

Nuclear and Particl Physics Exp. Hall Rapid Cycle Synchrotror Energy : 3 GeV Repetition : 25 Hz Design Power : 1 MW

400 MeV

Main Ring Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1 MW

J-PARC Facility (KEK/JAEA)

Neutrino beam to Kamipka

- 100000

Material and Life Science Facility

COMET

Nuclear and Particl Physics Exp. Hall Rapid Cycle Synchrotror Energy : 3 GeV Repetition : 25 Hz Design Power : 1 MW

400 MeV

Main Ring Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1 MW

NEV

COMET

J-PARC Facility (KEK/JAEA)

Neutrino beam to Kamioka

1. 100 - 1

Material a

cience

Nuclear and Partic Physics Exp. Hall

US-Japan meeting, 15-16 April, 2019 at Univ. of Hawaii

New branch of primary

proton transport

MeV

COMET

- Target S.E.S. 2.6×10⁻¹⁷
- BGeV Pulsed proton beam at J-PARC
 - Insert empty buckets for necessary pulse-pulse width
 - \bullet bunched-slow extraction
- pion production target in a solenoid magnet
- Muon transport & electron momentum analysis using C-shape solenoids
 - smaller detector hit rate
 - need compensating vertical field
- Tracker and calorimeter to measure electrons
- COMET decided to take a staging approach to realize this. The collaboration is making an effort to start physics DAQ as early as possible under this.
 - Phase-I 8GeV-3.2kW, < 10⁻¹⁴
 - Phase-II 8GeV-56kW, < 10⁻¹⁶

Status of COMET Phase I

- Facility
 - Proton beam line & SC magnet system
- Detectors
 - Phase-I Physics Detector (CDC & TC)
 - Phase-I Beam measurement Detector (Straw tracker and LYSO Ecal)

STREET, STREET

Final assembly design

- COMET requires MR operation at 8GeV (instead of 30GeV for HD hall experiments and T2K)
- Proton beam extracted from MR without destroying the bunch structure to generate pulsed-muon beam with a suitable pulse timing
- Proton beam extinction factor measurement using secondary beam in 2018
 - 1-2x10⁻¹⁰ extinction factor has already been achieved by masking K4 rear bunch

Mu2e at FNAL

• A search for Charged Lepton Flavor Violation: $\mu N \rightarrow e N$

- Expected sensitivity of 6x10-17
 Ø 90% CL, x10,000 better than SINDRUM-II
- Probes effective new physics mass scales up to 10⁴ TeV/c²
- Discovery sensitivity to broad swath of NP parameter space

Mu2e

- Mu2e makes use of existing infrastructure at Fermilab
- Mu2e uses 8 kW of protons
 - From the Booster (8 GeV) & Re-bunched in the Recycler
 - Slow-spill from Delivery Ring
 - Accumulator/Debuncher for Tevatron anti-protons
 - Revolution period 1695 ns

• Mu2e will run simultaneously with NOvA and SBN US-Japan meeting, 15-16 April, 2019 at Univ. of Hawaii

Mu2e Status

- Installation of beamline magnets nearly complete
- TS components being devolved to FNAL
- PS model coil successfully completed
- Cryogenics in preparation

Mu2e Detectors

Prototype DRA® board

connections

Digitization Readout And

ose-up of pre-amp

j-PARC

Straw-tube tracker

Csl Calorimeter

Proto	type cryst	tals for testi
Amerys C0036	S-C C0066	SIC C0073
Amerys C0034	S-G C0065	SIC C0072
Amerys C0032	S-G C0063	SIC C0071
Amerys C0030	S-G C0062	SIC C0070
Amcrys C0027	S-G C0060	SIC C0068
Amcrys C0026	S-G C0058	SIC C0043
Amerys C0025	S-G C0057	SIC C0042
Amerys C0023	S-G C0051	SIC C0041
Amerys C0019	S-G C0049	SIC C0040
Amerys C0015 Amerys C0016	S-G C0048	SIC C0038
Amerys C0013	S-G C0045	SIC C0037

- Csl crystal calorimeter
 - Important for particle ID
 - ~7% energy resolution @ 105 MeV
 - <200 ps timing resolution
- 2 disks oriented transverse to beam line, 70 cm apart
- Readout : 2 photo-sensors per crystal (MPPCs)

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Input to Eur. Particle Physics Strategy "Charged Lepton Flavour Violation using Intense Muon Beams at Future Facilities"

Summary

- Future plans of muon CLFV
 - MEG II & Mu3e
 - COMET & Mu2e
- COMET & Mu2e had been working together in the US-Japan program
 - AC-diple development, SC Al-stabilized wire R&D, and SC magnet R&D
- Collaborative efforts between COMET and Mu2e continue

Backup

net

US-Japan meeting, 15-16 April, 2019 at Univ. of Hawaii

Example KEK Unravelling the mysteries of matter, life and the universe. If the signal is found....

- Comparison of signal rates of $\mu \rightarrow$ ex, $\mu \rightarrow$ eee, and μ -e conversion will clarify the physics behind cLFV reactions
- Even discovery only in $\mu\text{-}e$ conversion
 - Different target material contains different quark contents
 - May be possible to see the target dependence on the mu-e conversion rate
 - Discriminate the principal interaction of the mu-e conversion?
 - Vector type, Dipole type, or Scaler type?
- Possible taget
 - PeeMe: C (& Si)
 - COMET & Mu2e: Al (& Ti in future? & Pb in far future ??)

©Optimization of the Electron Spectrometer Solenoid

105MeV electron generated isotropically at the target

Performance of the Electron Spectrometer Solenoid

Heat map shows path of electrons between 60 and 65MeV/c

Performance of the Electron Spectrometer Solenoid

Heat map shows path of electrons between 60 and 65MeV/c

• Threshold is optimized to maximize $S/\sqrt{S+B}$

• Single event sensitivity of 2.6x10⁻¹⁷ with 1.84x10⁷ sec DAQ

Mu2e Civil Construction

Mu2e beam line and experimental hall are complete

Mu₂e