

B and K Physics: Prospects for Belle II + KOTO

Alan Schwartz University of Cincinnati, USA

40th Anniversary Symposium
US-Japan Science and Technology Cooperation
Program in High Energy Physics

East-West Center

University of Hawaii
Honolulu, Hawaii
16 April 2019

> overview
> - measurement of angles
> measurement of sides $\left(\left|V_{\text {ub }}\right|\right)$
> searches for new physics $\left[R\left(D^{(}\right)\right.$)...]
> charm, τ, and $(g-2)_{\mu}$ physics
> KOTO prospects

Motivation

Why a flavor factory?

A flavor factory searches for NP by measuring phases, CP asymmetries, inclusive decay processes, rare leptonic decays, absolute branching fractions. There is a wide range of observables with which to confront theory.

Why an $\mathrm{e}^{+} \mathrm{e}^{-}$Machine?

- Low backgrounds, high trigger efficiency, excellent γ and π^{0} recontruction (and thus η, η^{\prime}, ρ^{+}, etc. reconstruction), high flavor-tagging efficiency with low dilution, many control samples to study systematics
- Due to low backgrounds, negligible trigger bias, and good kinematic resolutions, Dalitz plots analyses are straightforward. Absolute branching fractions can be measured. Missing energy and missing mass analyses are straightforward.
- Systematics quite different from those at LHCb. If true NP is seen by one of the experiments, confirmation by the other would be important.

History

The Belle + BaBar Era:

The "B Factory" experiments Belle and BaBar ran for ~ 10 years (2000-2010) and were huge successes: 1108 papers published to date, many discoveries (CPV in $B^{0} \rightarrow J / \psi K^{0}$, direct CPV in $B^{0} \rightarrow \pi^{+} \pi^{-}, D^{0}-D^{0}$ bar mixing, $X(3872), D_{s J}(2317)$, etc.), a Nobel Prize (Kobayashi and Maskawa, 2008)

Channel	Belle	BaBar	Belle II (per year)
$B \bar{B}$	7.7×10^{8}	4.8×10^{8}	1.1×10^{10}
$B_{s}^{(*)} \bar{B}_{s}^{(*)}$	7.0×10^{6}	-	6.0×10^{8}
$\Upsilon(1 S)$	1.0×10^{8}		1.8×10^{11}
$\Upsilon(2 S)$	1.7×10^{8}	0.9×10^{7}	7.0×10^{10}
$\Upsilon(3 S)$	1.0×10^{7}	1.0×10^{8}	3.7×10^{10}
$\Upsilon(5 S)$	3.6×10^{7}	-	3.0×10^{9}
$\tau \tau$	1.0×10^{9}	0.6×10^{9}	1.0×10^{10}

Belle II is a significant upgrade of Belle: new accelerator, new detector, new electronics, new DAQ, new trigger. Goal: $50 a^{-1}$ of data

Belle II physics: "golden modes"

 physics:(covered here)

Observables	Expected exp. uncertainty	Facility (2025)
UT angles \& sides		
- $\phi_{1}\left[^{\circ}\right]$	0.4	Belle II
$\left.\phi_{2}{ }^{[}\right]$	1.0	Belle II
$\phi_{3}{ }^{\circ}{ }^{\circ}$	1.0	LHCb/Belle II
$\left\|V_{c b}\right\|$ incl.	1\%	Belle II
$\left\|V_{c b}\right\|$ excl.	1.5\%	Belle II
$\left\|V_{u b}\right\|$ incl.	3\%	Belle II
- $\left.\right\|^{\text {ab }}$ \| excl.	2\%	Belle II/LHCb
CPV		
$S\left(B \rightarrow \phi K^{0}\right)$	0.02	Belle II
$S\left(B \rightarrow \eta^{\prime} K^{0}\right)$	0.01	Belle II
- $\mathcal{A}\left(B \rightarrow K^{0} \pi^{0}\right)\left[10^{-2}\right]$	4	Belle II
$\mathcal{A}\left(B \rightarrow K^{+} \pi^{-}\right)\left[10^{-2}\right]$	0.20	LHCb/Belle II
(Semi-)leptonic		
$\mathcal{B}(B \rightarrow \tau \nu)\left[10^{-6}\right]$	3%	Belle II
$\mathcal{B}(B \rightarrow \mu \nu)\left[10^{-6}\right]$	7\%	Belle II
- $R(B \rightarrow D \tau \nu)$	3%	Belle II
- $R\left(B \rightarrow D^{*} \tau \nu\right)$	2\%	Belle II/LHCb
- Radiative \& EW Penguins		
$\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)$	4\%	Belle II
$A_{C P}\left(B \rightarrow X_{s, d} \gamma\right)\left[10^{-2}\right]$	0.005	Belle II
$S\left(B \rightarrow K_{S}^{0} \pi^{0} \gamma\right)$	0.03	Belle II
$S(B \rightarrow \rho \gamma)$	0.07	Belle II
$\mathcal{B}\left(B_{s} \rightarrow \gamma \gamma\right)\left[10^{-6}\right]$	0.3	Belle II
$\mathcal{B}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)\left[10^{-6}\right]$	15\%	Belle II
$\mathcal{B}(B \rightarrow K \nu \bar{\nu})\left[10^{-6}\right]$	20\%	Belle II
$R\left(B \rightarrow K^{*} \ell \ell\right)$	0.03	Belle II/LHCb

- Charm physics:

Dark Photon/Sector:

- Tau physics

Quarkonium-like B_{s} physics at $r(5 S)$

Unitarity triangle - determining the angles

$$
V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0
$$

Belle/BaBar LHCb

The internal angles of this triangle are phase differences that can be measured via various strategies:

$$
\begin{aligned}
& B \rightarrow \pi^{+} \pi^{-} / \pi^{+} \pi^{0} / \pi^{0} \pi^{0} \\
& B \rightarrow \rho^{+} \rho^{-} / \rho^{+} \rho^{0} / \rho^{0} \rho^{0} \\
& B^{0} \rightarrow \rho \pi \\
& B^{0} \rightarrow a_{1}(\rho \pi)^{+} \pi^{-} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& B^{-} \rightarrow D^{(*)} C P K^{(*)-} \\
& B^{0} \rightarrow D_{C P} K^{* 0} \\
& B^{-} \rightarrow D^{(*)}\left(K^{+} \pi^{-}\right) K^{(*)-} \\
& B^{-} \rightarrow D^{(*) 0} \pi^{-} \\
& \left.B^{-} \rightarrow D^{*}\right)\left(K_{S} \pi^{+} \pi^{-}\right) K^{(*)-} \\
& B^{-} \rightarrow D\left(\pi^{0} \pi^{+} \pi^{-}\right) K^{-} \\
& B^{-} \rightarrow D\left(K_{S} K^{+} \pi\right) K^{-}
\end{aligned}
$$

Determining $\phi_{1}(\beta)$

$B^{0} \rightarrow J / \psi \boldsymbol{K}_{\boldsymbol{S}}$ (the "Golden" mode):

expected $50 \mathrm{ab}^{-1}$ uncertainty: $\delta \phi_{1}=0.4^{\circ}$
(this is less than the current theory error of 1-2)

$$
A_{C P}=A \cos (\Delta M \Delta t)+S \sin (\Delta M \Delta t)
$$

$B^{0} \rightarrow \phi K_{S}, \eta^{\prime} \mathbf{K}_{S}, \omega K_{S}, \pi^{0} K_{S}$ ("penguin" modes):

	WA (2017)		$5 \mathrm{ab}^{-1}$		$50 \mathrm{ab}^{-1}$	
Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$
$J / \psi K^{0}$	0.022	0.021	0.012	0.011	0.0052	0.0090
ϕK^{0}	0.12	0.14	0.048	0.035	0.020	0.011
$\eta^{\prime} K^{0}$	0.06	0.04	0.032	0.020	0.015	0.008
ωK_{S}^{0}	0.21	0.14	0.08	0.06	0.024	0.020
$K_{S}^{0} \pi^{0} \gamma$	0.20	0.12	0.10	0.07	0.031	0.021
$K_{S}^{0} \pi^{0}$	0.17	0.10	0.09	0.06	0.028	0.018

A. J. Schwartz Physics Prospects for Belle II (+ KOTO) 40th Anniversary Symposium 6

$\boldsymbol{A}_{\boldsymbol{C P}}=$	$\boldsymbol{A} \cos (\boldsymbol{\Delta} \boldsymbol{M} \boldsymbol{\Delta} \boldsymbol{t})+\boldsymbol{S} \sin (\boldsymbol{\Delta} \boldsymbol{M} \boldsymbol{\Delta} \boldsymbol{t})$					
WA (2017)					$5 \mathrm{ab}^{-1}$	
Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$
$K_{S}^{0} \pi^{0}$	0.17	0.10	0.09	0.06	0.028	0.018

Isospin symmetry:

$\mathcal{B}\left(B^{0} \rightarrow \pi^{0} K_{S}\right), \mathcal{B}\left(B^{0} \rightarrow \pi^{+} K^{-}\right), \mathcal{B}\left(B^{+} \rightarrow \pi^{0} K^{+}\right), \mathcal{B}\left(B^{+} \rightarrow \pi^{+} K_{S}\right)$ constrain $A_{C P}$ of $B^{0} \rightarrow \pi^{0} K_{S}$

«Belle II 50 ab-1
\longleftarrow Preferred region based on
current branching fractions

Current WA
Belle II 50 ab-1

Also: Fleischer et al., arXiv:1806.08783
A. J. Schwartz Physics Prospects for Belle II (+ KOTO) 40th Anniversary Symposium
FLAG, arXiv:1607.00299 (2016)
Bharucha, JHEP 05, 092 (2012)

$$
\begin{aligned}
& B^{0} \rightarrow D^{(*)} \ell v \\
& B^{0} \rightarrow X_{c} \ell v \text { (} \ell \text { energy, hadron } \\
& \quad \text { mass moments) } \\
& B^{0} \rightarrow X_{s} \gamma(\gamma \text { energy moments) } \\
& \hline
\end{aligned}
$$

Detmold et al., PRD 92, 034503 (2015)
Faustov and Galkin, PRD 94, 073008 (2016)
Lange et al. (BLNP), PRD 72, 073006 (2005)
Andersen, Gardi (DGE), JHEP 601, 97 (2006)
Gambino et al. (GGOU), JHEP 10, 058 (2007)
Aglietti et al. (ADFR), EPJ C59 (2009)
Bauer et al. (BLL), PRD 64, 113004 (2001)
Caprini et al., Nucl. Phys. B530, 153 (1998)
FNAL/MILC, PRD 89, 114504 (2014)
FNAL/MILC, PRD 92, 034506 (2015)
Benson et al., Nucl. Phys. B665, 367 (2003)
Gambino, Uraltsev, EPJ C34, 181 (2004)
Gambino, JHEP 09, 055 (2011)
Alberti et al., PRL 114, 061802 (2015)
Bauer, Ligeti, et al., PRD 70, 094017 (2004)
Gambino and Schwanda, PRD 89, 014002 (2014)

$$
\frac{d \Gamma\left(B \rightarrow P \ell^{+} \nu\right)}{d q^{2}}=\frac{G_{F}^{2}}{24 \pi^{3}}\left|f^{+}\left(q^{2}\right)\right|^{2}\left|V_{u b}\right|^{2} p^{* 3}
$$

Use BCL parametrization of form factor, fit q^{2} spectrum for $B C L$ parameters and $\left|V_{u b}\right|$

BCL: Bourrely, Caprini, Lellouch, PRD 79, 013008 (2009) Lattice: Aoki et al., (FLAG), EPJC 77, 112, (2017)
LCSR: Bharucha, JHEP 05, 092, (2012)
HFLAV: EPJC 77 (2017) 895 [arXiv:1612.07233]
A. J. Schwartz Physics Prospects for Belle II (+ KOTO)

$\left|V_{u b}\right|$ via exclusive $B \rightarrow \pi l v$

Should help resolve 2 "tensions" (discrepancies): Exclusive $\left|V_{u b}\right|$ vs. inclusive $\left|V_{u b}\right|$

Consistency with $\phi_{1}(\beta)$

Searches for New Physics

$B \rightarrow D^{(*)} \tau v$ can also receive contribution from a charged Higgs, changing the rate, q^{2} distribution, etc.

Define ratios:

$$
\mathcal{R}_{D^{*}} \equiv \frac{\mathcal{B}\left(B \rightarrow D^{*} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{*} \ell \nu\right)} \quad \mathcal{R}_{D} \equiv \frac{\mathcal{B}(B \rightarrow D \tau \nu)}{\mathcal{B}(B \rightarrow D \ell \nu)}
$$

Uncertainties from form factors and $V_{c b}$ drop out \Rightarrow ratios test lepton universality. Measured values are above SM prediction:

$R(D)$ and $R\left(D^{*}\right)$ exceed SM predictions by 2.3σ and 3.0σ respectively. As $R(D)-R\left(D^{*}\right)$ correlation $=-0.203$, two-dimensional $x^{2}=17.55$
\Rightarrow for 2 deg. of freedom, p-value $=1.57 \times 10^{-4}(3.8 \sigma)$
[Moriond 2019: 3.1 σ]

Scaling from Belle \rightarrow Belle II (50 ab-1):

Belle II can measure the τ polarization:

$$
\begin{gathered}
P_{\tau} \\
\equiv \frac{\Gamma^{+}-\Gamma^{-}}{\Gamma^{+}+\Gamma^{-}} \\
\frac{d \Gamma}{d \cos \theta_{h}}
\end{gathered}
$$

$$
\binom{\tau \rightarrow \pi v: \alpha=1}{\tau \rightarrow \rho v: \alpha=0.45}
$$

A. J. Schwartz Physics Prospects for Belle II (+ KOTO) 40th Anniversary Symposium

Inclusive decays were measured at Belle/BaBar using a sum-of-exclusives method: e.g., $X_{s}=K n(\pi)$ with $n<5$ and max $1 \pi^{0}$. This can be improved at Belle II in several ways:

- 3 K modes can be included;
- more π^{+}can possibly be included;
- another π^{0} can possibly be included;
- improved full reconstruction on tagging side (with neural network) may make true inclusive analysis feasible (under study)

Observables	Belle $0.71 \mathrm{ab}^{-1}$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
$B\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(1.0<q^{2}<3.5 \mathrm{GeV}^{2}\right)$	29%	13%	6.6%
$B\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(3.5<q^{2}<6.0 \mathrm{GeV}^{2}\right)$	24%	11%	6.4%
$B\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(q^{2}>14.4 \mathrm{GeV}^{2}\right)$	23%	10%	4.7%
$A_{C P}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(1.0<q^{2}<3.5 \mathrm{GeV}^{2}\right)$	26%	9.7%	3.1%
$A_{C P}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(3.5<q^{2}<6.0 \mathrm{GeV}^{2}\right)$	21%	7.9%	2.6%
$A_{C P}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(q^{2}>14.4 \mathrm{GeV}^{2}\right)$	21%	8.1%	2.6%
$A_{F B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(1.0<q^{2}<3.5 \mathrm{GeV}^{2}\right)$	26%	9.7%	3.1%
$A_{F B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(3.5<q^{2}<6.0 \mathrm{GeV}^{2}\right)$	21%	7.9%	2.6%
$A_{F B}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(q^{2}>14.4 \mathrm{GeV}^{2}\right)$	19%	7.3%	2.4%
$\Delta_{C P}\left(A_{F B}\right)\left(1.0<q^{2}<3.5 \mathrm{GeV}^{2}\right)$	52%	19%	6.1%
$\Delta_{C P}\left(A_{F B}\right)\left(3.5<q^{2}<6.0 \mathrm{GeV}^{2}\right)$	42%	16%	5.2%
$\Delta_{C P}\left(A_{F B}\right)\left(q^{2}>14.4 \mathrm{GeV}^{2}\right)$	38%	15%	4.8%

Belle II 50 ab-1 exclusion contours (BR and $A_{F B}$ of inclusive $b \rightarrow s l l$) :

(n) σ pull to SM fit if true values

Exclusive decays fit: JHEP 06 (2016)092

Charm Physics

The Belle II Vertex Detector

Two detectors for vertexing:

- 2 layers of DEPFET pixels
- 4 layer of silicon strips

Pixel detector:
Silicon strip detector:

	Inner layer (L1)	Outer layer (L2)	layer	type	readout strip(p/r- ϕ)	readout strip(n/z)	strip pitch ($p / r-\phi$)	strip pitch (n/z)
\# modules	2×8	2×12						
distance from IP (cm)	1.4	2.2	4,5,6	Large	768	512	$75 \mu \mathrm{~m}$	$240 \mu \mathrm{~m}$
thickness ($\mu \mathrm{m}$)	75	75						
total \# pixels	3.072×10^{6}	4.608×10^{6}	forward	Trapezoidal	768	512	50-75 $\mu \mathrm{m}$	$240 \mu \mathrm{~m}$
pixel size ($\mu \mathrm{m}^{2}$)	$55,60 \times 50$	70, 85×50	3	Small	768	768	$50 \mu \mathrm{~m}$	$160 \mu \mathrm{~m}$
sensitive area (mm^{2})	44.8×12.5	61.44×12.5						

$$
t=\frac{\ell}{\beta \gamma c}=\frac{\ell}{c} \frac{m_{D}}{|\vec{p}|}
$$

Analysis	Observable	Uncertainty (\%)			
		Now $\left(\sim 1.0 \mathrm{fb}^{-1}\right)$	$\mathcal{L}=50 \mathrm{fb}^{-1}$		
$K_{S}^{0} \pi^{+} \pi^{-}$	\boldsymbol{x}	0.21	0.11		
	\boldsymbol{y}	0.17	0.05		
	$\|q / p\|$	0.21	0.074		
	ϕ	14°	4.2°		
$\pi^{+} \pi^{-}, K^{+} K^{-}$	$y_{C P}$	0.11	0.05		
	A_{Γ}	0.026	0.026		
$K^{+} \pi^{-}$	$x^{\prime 2}$	0.022	0.007		
	y^{\prime}	0.34	0.097		
	$\|q / p\|$		0.043		
	ϕ		5.4°	$]$	NOTE: does
:---					
not include					
factor of ~ 2					
improvement					
in decay time					
resolution					

Note: statistical error and some systematics scale by luminosity, but other systematics do not.

Mixing Constraints in the $D^{0}-\bar{D}^{0}$ system

Inserting these errors for $y_{C P}, A_{\Gamma}, x^{\prime 2}, y^{\prime}$, and $K_{S} \pi^{+} \pi^{-}$observables into the HFAG global fit:

Current measurements of x, y give many constraints on NP models [Golowich et al., PRD76, 095009 (2007)]
A. J. Schwartz Physics Prospects for Belle II (+ KOTO) 40th Anniversary Symposium

$$
\sigma_{\text {Belle II }}=\sqrt{\left(\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}\right) \cdot \frac{\mathcal{L}_{\text {Belle }}}{50 \mathrm{ab}^{-1}}+\sigma_{\text {irred }}^{2}} \leftarrow \sqrt{\begin{array}{l}
\text { mainly due to } K^{0}- \\
K^{0} \text { bar interaction } \\
\text { asymmetry }
\end{array}}
$$

Mode	$\mathcal{L}\left(\mathrm{fb}^{-1}\right)$	$A_{C P}(\%)$		
$D^{0} \rightarrow K^{+} K^{-}$	976	$-0.32 \pm 0.21 \pm 0.09$	± 0.03	
$D^{0} \rightarrow \pi^{+} \pi^{-}$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05	singly Cabibbo- $50 \mathrm{ab}^{-1}$
$D^{0} \rightarrow \pi^{0} \pi^{0}$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09	
$D^{0} \rightarrow K_{S}^{0} \pi^{0}$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.02	
$D^{0} \rightarrow K_{S}^{0} K_{S}^{0}$	921	$-0.02 \pm 1.53 \pm 0.02 \pm 0.17$	± 0.23	
$D^{0} \rightarrow K_{S}^{0} \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07	
$D^{0} \rightarrow K_{S}^{0} \eta^{\prime}$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09	
$D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	532	$+0.43 \pm 1.30$	± 0.13	
$D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$	281	-0.60 ± 5.30	± 0.40	doubly Cabibbod
$D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$	281	-1.80 ± 4.40	± 0.33	
$D^{+} \rightarrow \phi \pi^{+}$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04	
$D^{+} \rightarrow \pi^{+} \pi^{0}$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17	
$D^{+} \rightarrow \eta \pi^{+}$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14	
$D^{+} \rightarrow \eta^{\prime} \pi^{+}$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14	
$D^{+} \rightarrow K_{S}^{0} \pi^{+}$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.02	
$D^{+} \rightarrow K_{S}^{0} K^{+}$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.04	
$D_{s}^{+} \rightarrow K_{S}^{0} \pi^{+}$	673	$+5.45 \pm 2.50 \pm 0.33$	± 0.29	
$D_{s}^{+} \rightarrow K_{S}^{0} K^{+}$	673	$+0.12 \pm 0.36 \pm 0.22$	± 0.05	

τ Physics

Lepton-flavor-violating (LFV) decays

Belle II is ideally suited for searching for LFV decays:

$$
\begin{aligned}
& M_{\mu \gamma}=\sqrt{E_{\mu \gamma}^{2}-p_{\mu \gamma}^{2}} \\
& \Delta E=E_{\mu \gamma}^{C M}-E_{\text {beam }}^{C M}
\end{aligned}
$$

Hayasaka et al. (Belle), PLB 666, 16 (2008)

Hayasaka et al. (Belle),
PLB 687, 139 (2010)
A. J. Schwartz Physics Prospects for Belle II (+ KOTO) 40th Anniversary Symposium

CLEO
BaBar
Belle
LHCb

> Theory predictions:
> SUSY extension to SM: $\mathcal{B}(\tau \rightarrow \mu \gamma) \sim\left[10^{-4}-10^{-9}\right]$
> SUSY Seesaw model: $\mathcal{B}(\tau \rightarrow \mu \gamma) \sim\left[10^{-9}-10^{-13}\right]$

Belle II contribution to $a_{\mu}=(g-2) / 2$

Discrepancy:

a_{μ} [Experiment - Theory] $=(260 \pm 72) \times 10^{-11}$

Experimental uncertainty:

$$
\delta \mathrm{a}_{\mu}=63 \times 10^{-11} \rightarrow \underset{E-989}{\rightarrow} \sim 16 \times 10^{-11}
$$

Theoretical uncertainty: [T. Blum, talk at Moriond Electroweak 2019]

Contribution	Jagnitude (10^{-11})	Uncertainty (10^{-11})	Hadronic contributions:
QED	116584718.951	0.080	
electroweak	153.6	1.0	Sh had
NLO hadronic	-98.2	0.4	
NNLO hadronic	12.4	0.1	
light-by-light hadronic	105	26	
LO hadronic	$\begin{gathered} 6931 \\ 6932.6 \\ 6925 \end{gathered}$	$\begin{gathered} 34 \\ 24.6 \\ 27 \end{gathered}$	errors from lattice. But LO hadronic can be determined more precisely using data

Leading order hadronic (Vacuum Polarization):

Davies et al., 1902.04223:

Method 1: $e^{+} e^{-} \rightarrow$ hadrons, 1-2 GeV region [BaBar, PRL 103, 231801 (2009)]

Method 2: $\tau^{+} \rightarrow \pi^{+} \pi^{0} v$ spectral function [Belle, PRD 78, 072006 (2008)]

KOTO Physics

$K_{L} \rightarrow \pi^{0} \nu \nu$: the original 'golden channel'

June 1989, Littenberg: indirect and direct CPV contributions to $K_{L} \rightarrow$ $\pi^{0} v v$ can be estimated from real and imaginary parts of $\mathcal{A}\left(K^{+} \rightarrow \pi^{+} v v\right)$. The direct CPV piece is much larger. Estimated B: ~10-11. This seems ~impossible to measure.

The theoretical prediction is subsequently refined by Buras and others to
$\mathcal{B}\left(K_{L} \rightarrow \pi^{0} v v\right)=(3.0 \pm 0.3) \times 10^{-11}$
Sensitive to height η :

$V_{c b}^{*} V_{c d}$

30 years later:

15 January 2019, KOTO

publishes in PRL:

$\mathcal{B}\left(K_{L} \rightarrow \pi^{0} v v\right)<3.0 \times 10^{-9}(90 \% C L)$
$C P$-violating decay $K_{L}^{0} \rightarrow \pi^{0} v \bar{v}$

Laurence \mathbf{S}. Littenberg

Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (Received 6 January 1989)
The process $K_{L}^{0} \rightarrow \pi^{0} v \bar{v}$ offers perhaps the clearest window yet proposed into the origin of $C P$ violation. The largest expected contribution to this decay is a direct $C P$-violating term at $\approx \mathrm{few} \times 10^{-12}$. The indirect $C P$-violating contribution is some 3 orders of magnitude smaller, and $C P$-conserving contributions are also estimated to be extremely small. Although this decay has nevon $K_{L}^{0} \rightarrow 2 \pi^{0}$ This leaves an enormous range in which to search for new physics. If the Kobayashi-Maskawa (KM) model prediction can be reached, a theoretically clean determination of the $K M$ product $\sin \theta_{2} \sin \theta_{3} \sin \delta$ can be made.

The Glashow-Iliopoulos-Maiani- (GIM-) mechanism ${ }^{1}$ suppressed processes $K \rightarrow \pi \nu \bar{v}$ (Refs. 2-5) and $K_{L}^{0} \rightarrow \pi^{0} e^{+} e^{-}$(Ref. 6) have been much discussed recently as tests of the standard model (SM). In each case the current experimental limit ${ }^{1,8}$ lies more than 2 orders of magnitude above the SM prediction, affording a larg

$$
B\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right)=B\left(K^{+} \rightarrow \pi^{0} e^{+} v\right) \frac{2 \alpha^{2}}{16 \pi^{2} \sin ^{4} \theta_{W}}
$$

$$
\times\left|\sum_{j=c, t} V_{j s}^{*} V_{j d} D\left(x_{j}\right)\right|^{2} / V_{u s}^{2}
$$

for each neutrino flavor, where $V_{i j}$ are the KM matrix

PHYSICAL REVIEW LETTERS 122, 021802 (2019)

Search for $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ and $K_{L} \rightarrow \pi^{0} X^{0}$ Decays at the J-PARC KOTO Experiment

J. K. Ahn, ${ }^{1}$ B. Beckford, ${ }^{2}$ J. Beechert, ${ }^{2}$ K. Bryant, ${ }^{2}$ M. Campbell, ${ }^{2}$ S. H. Chen, ${ }^{3}$ J. Comfort, ${ }^{4}$ K. Dona, ${ }^{2}$ N. Hara, ${ }^{5}$ H. Haraguchi, ${ }^{5}$ Y. B. Hsiung, ${ }^{3}$ M. Hutcheson, ${ }^{2}$ T. Inagaki, ${ }^{6}$ I. Kamiji, ${ }^{7}{ }^{7}$ N. Kawasaki, ${ }^{7}$ E. J. Kim, ${ }^{8}$ J. L. Kim, ${ }^{1,}{ }^{7}$ Y. J. Kim, ${ }^{9}$ J. W. Ko, ${ }^{9}$ T. K. Komatsubara, ${ }^{6,10}$ K. Kotera, ${ }^{5}$ A. S. Kurilin, ${ }^{11,{ }^{*}}$ J. W. Lee,,${ }^{5, \$}$ G. Y. Lim, ${ }^{6,10}$ C. Lin, ${ }^{3}$ Q. Lin, ${ }^{12}$ Y. Luo, ${ }^{12}$ J. Ma, ${ }^{12}$ Y. Maeda, ${ }^{, 8}$ T. Mari, ${ }^{5}$ T. Masuda, ${ }^{7,1}$ T. Matsumura, ${ }^{13}$ D. Mcfarland, ${ }^{4}$ N. McNeal, ${ }^{2}$ J. Micallef, ${ }^{2}$ K. Miyazaki, ${ }^{5}$ R. Murayama, ${ }^{5,{ }^{5}}$ D. Naito, ${ }^{7,4}$ K. Nakagiri, ${ }^{7}$ H. Nanjo, ${ }^{7,{ }^{* *}}$ H. Nishimiya, ${ }^{5}$ T. Nomura, ${ }^{6,10}$ M. Ohsugi, ${ }^{5}$ H. Okuno, ${ }^{6}$ M. Sasaki, ${ }^{14}$
N. Sasao, ${ }^{15}$ K. Sato, ${ }^{5, \dagger}$ T. Sato, ${ }^{6}$ Y. Sato, ${ }^{5}$ H. Schamis, ${ }^{2}$ S. Seki, ${ }^{7}$ N. Shimizu, ${ }^{5}$ T. Shimogawa, ${ }^{16,{ }^{7}}$ T. Shinkawa, ${ }^{13}$
S. Shinohara, ${ }^{7}$ K. Shiomi, ${ }^{6,10}$ S. Su, ${ }^{2}$ Y. Sugiyama, ${ }^{5,9}$ S. Suzuki, ${ }^{16}$ Y. Tajima, ${ }^{14}$ M. Taylor, ${ }^{2}$ M. Tecchio, ${ }^{2}$ M. Togawa, ${ }^{5,4}$ Y. C. Tung, ${ }^{12}$ Y. W. Wah, ${ }^{12}$ H. Watanabe, ${ }^{6,10}$ J. K. Woo, ${ }^{9}$ T. Yamanaka, ${ }^{5}$ and H. Y. Yoshida ${ }^{14}$
(KOTO Collaboration)
${ }^{1}$ Department of Physics, Korea University, Seoul 02841, Republic of Korea ${ }^{2}$ Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
${ }^{3}$ Department of Physics, National Taiwan University, Taipei, Taiwan 10617, Republic of China
Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
${ }^{5}$ Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
${ }^{6}$ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan

$K_{L} \rightarrow \pi^{0} \nu v:$ KOTO Measurement

2015 Data [PRL 122, 021802 (2019)]:
 $Z_{\mathrm{vtx}}(\mathrm{mm})$

2016-2018 Data [M. Cambell's talk]:

Signal: 0.037 Backgrnd: 0.15 S/B: 1/4

Future [Y.-C. Tung, CERN EP Seminar, 26 Feb 2019]:

| Year | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Avg. Beam Power (kW) | 38 | 42 | 43 | 50 | 50 | 70 | - | 80 | 90 | 100 |
| Run Time (monh) | 3.1 | 1 | 1.3 | 2.2 | | | | | | |
| Scenario A (month) | | | | | 2 | 4 | - | 4 | 4 | 4 |
| Scenario B (month) | | | | | 2 | 2 | - | 2 | 2 | 2 |

A. J. Schwartz Physics Prospects for Belle II (+ KOTO) 40th Anniversary Symposium

- Belle II is now (essentially) fully constructed and installed. The experiment is beginning its first physics run ("Phase III") run (April-July). This will fully commission the detector, and there will be early physics (e.g., $D^{0} \rightarrow \gamma \gamma$, dark photon search, etc.)
- Accelerator commissioning is proceeding, but there are growing pains as expected: background is high, so current is kept low. β_{y} is slowly being reduced.
- Physics potential is huge: there is much better vertexing, particle ID than in Belle; factor of 50x statistics; and full reconstruction on tag side is notably improved over Belle/BaBar.
- KOTO has come a long way since the first 100-hour analysis. SES is now near the Grossman-Nir bound. It looks very promising the experiment will get to 10^{-10}; while this is still larger than the SM, it is significantly greater sensitivity to NP than previous searches.

Extra Slides

The Belle II Detector

$$
\mathcal{B}\left(B^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B}
$$

World average: $\quad \mathcal{B}\left(B^{+} \rightarrow \tau^{+} v\right)=(1.06 \pm 0.19) \times 10^{-4}$
$\Rightarrow \quad\left|V_{u b}\right|=(3.55 \pm 0.12) \times 10^{-3} \quad$ using $f_{B}=(185 \pm 3) \mathrm{MeV}$ (FLAG 2017)
There is tension coming from $\left|V_{u b}\right|$ measured in $\mathcal{B}\left(B^{+} \rightarrow \tau^{+} v\right)$ and $\phi_{1}(\beta)$ and $\phi_{2}(\alpha)$:

A. J. Schwartz Physics Prospects for Belle II (+ KOTO) 40th Anniversary Symposium

$B \rightarrow D \ell v$ Reconstruction:

Divide event into 2 hemispheres: "signal" side and "flavor tag" side. Tag side is fully reconstructed (using neural net)

charged tags neutral tags
charged signals
neutral signals

$B^{-} \rightarrow D^{* 0} \pi^{-}$	$B^{0} \rightarrow D^{*+} \pi^{-}$
$B^{-} \rightarrow D^{* 0} \pi^{-} \pi^{0}$	$B^{0} \rightarrow D^{*+} \pi^{-} \pi^{0}$
$B^{-} \rightarrow D^{* 0} \pi^{-} \pi^{+} \pi^{-}$	$B^{0} \rightarrow D^{*+} \pi^{-} \pi^{+} \pi^{-}$
$B^{-} \rightarrow D^{* 0} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$	$B^{0} \rightarrow D^{*+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$
$B^{-} \rightarrow D^{0} \pi^{-}$	$B^{0} \rightarrow D^{+} \pi^{-}$
$B^{-} \rightarrow D^{0} \pi^{-} \pi^{0}$	$B^{0} \rightarrow D^{+} \pi^{-} \pi^{0}$
$B^{-} \rightarrow D^{0} \pi^{-} \pi^{+} \pi^{-}$	$B^{0} \rightarrow D^{+} \pi^{-} \pi^{+} \pi^{-}$
$B^{-} \rightarrow D^{* 0} D_{s}^{*-}$	$B^{0} \rightarrow D^{*+} D_{s}^{*-}$
$B^{-} \rightarrow D^{* 0} D_{s}^{-}$	$B^{0} \rightarrow D^{*+} D_{s}^{-}$
$B^{-} \rightarrow D^{0} D_{s}^{*-}$	$B^{0} \rightarrow D^{+} D_{s}^{*-}$
$B^{-} \rightarrow D^{0} D_{s}^{-}$	$B^{0} \rightarrow D^{+} D_{s}^{-}$
$B^{-} \rightarrow J / \psi K^{-}$	$B^{0} \rightarrow J / \psi K_{S}$
$B^{-} \rightarrow J / \psi K^{-} \pi^{+} \pi^{-}$	$B^{0} \rightarrow J / \psi K^{-} \pi^{+}$
$B^{-} \rightarrow J / \psi K^{-} \pi^{0}$	$B^{0} \rightarrow J / \psi K_{S} \pi^{+} \pi^{-}$
$B^{-} \rightarrow J / \psi K_{S} \pi^{-}$	$B^{0} \rightarrow D^{0} \pi^{0}$
$B^{-} \rightarrow D^{0} K^{-}$	
$B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$	

$$
\begin{aligned}
& D^{+} \rightarrow K^{-} \pi^{+} \pi^{+} \\
& D^{+} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{0} \\
& D^{+} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{+} \pi^{-} \\
& D^{+} \rightarrow K^{-} K^{+} \pi^{+} \\
& \\
& D^{+} \rightarrow K_{S} \pi^{+} \\
& D^{+} \rightarrow K_{S} \pi^{+} \pi^{0} \\
& D^{+} \rightarrow K_{S} \pi^{+} \pi^{+} \pi^{-} \\
& D^{+} \rightarrow K_{S} K^{+} \\
& \\
& D^{+} \rightarrow \pi^{+} \pi^{0} \\
& D^{+} \rightarrow \pi^{+} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}
\end{aligned}
$$

$$
D^{0} \rightarrow K^{-} \pi^{+}
$$

$$
D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}
$$

$$
D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}
$$

$$
D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-} \pi^{0}
$$

$$
D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}
$$

$$
D^{0} \rightarrow K_{S} \pi^{+} \pi^{-} \pi^{0}
$$

$$
D^{0} \rightarrow K_{S}^{S} \pi^{0}
$$

$$
D^{0} \rightarrow K^{-} K^{+}
$$

$$
D^{0} \rightarrow \pi^{+} \pi^{-}
$$

$$
D^{0} \rightarrow K_{S} K_{S}
$$

$$
D^{0} \rightarrow \pi^{0} \pi^{0}
$$

$$
D^{0} \rightarrow K_{S} \pi^{0} \pi^{0}
$$

$$
D^{0} \rightarrow \pi^{+} \pi^{+} \pi^{0}
$$

