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Introduction
• Current	requirements	and	where	they	come	from

• Overview	of	the	simulation	and	reconstruction

– Geant4-based	simulation	of	detector	designs	for	extrapolating	from	

measured	prototypes	to	baseline	design.

– LArSoft-based	simulation	for	connecting	system	performance	to	

physics	goals.

• New	physics	requirements	which	will	inform	new	detector	

requirements	for	the	TDR

– Start	from	DUNE	physics	goals…

• Beam	ν,	supernova	ν,	and	nucleon	decay.
– Flow	down	to	detector	requirements

• In	progress:	status	of	studies	so	far

• Performance	requirements	which	need	to	be	confirmed	with	

R&D	in	the	near	future.
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Current Scientific Requirements

• The	light	yield	requirement is	based	on	nucleon	decay	events.
– Physics	requirement: high	efficiency	(>99%)	for	tagging	nucleon	decay	events	
with	T0	to	eliminate	backgrounds	from	outside	the	detector.

– Based	on	MC	truth	studies	done	before	the	ProtoDUNE	review.

• The	light	yield	goal is	based	on	supernova	events.
– A	high-level	approximation	of	the	amount	of	light	needed	for	calorimetry	with	
the	PDS	comparable	to	the	TPC.

– This	will	be	replaced	with	a	full	suite	of	physics	requirements.	Will	discuss	at	
length	later.

• Timing	resolution:
– 1	µs	is	required	for	mm	precision	in	X,	comparable	to	the	TPC	in	Y and	Z.
– 100	ns	goal	would	allow	observing	finer	details	in	the	time	structure	(pulse-
shape	discrimination	or	Michel-e	tagging). 3

Requirement Goal
Light	Yield >	0.5	PE/MeV >	5	PE/MeV
Time	Resolution <	1	µs <	100	ns



Stand-Alone Detector Simulations
• 2	different	simulations	were	developed.

– Simulation	for	optimizing	ARAPUCA	designs	developed	in	
Brazil

– Simulation	tool	for	examining	a	variety	of	light	guides	
developed	at	Syracuse
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Verification with R&D Data

ARAPUCA
• Efficiency	at	LNLS:

– Simulation:	(1.5±0.3)%
– Measured:	(1.10±0.15)%

• Efficiency	at	TallBo
– Simulation:	(0.6±0.2)%
– Measured:	(0.77±0.05)%

• Cross-talk	and	after-pulsing	not	
corrected	for.

General Light Guide

• Reproduced	attenuation	behavior	of	double-
shift	light	guide.
– Variation	in	plate	quality	means	some	freedom	

in	absolute	scaling.

• ARAPUCA	efficiency	at	TallBo
– Simulation:	1.1%
– Measured:	0.77%

• Correct	simulation	for	difference	in	observed	
efficiency	and	cross-talk	in	measurement. 5



Verification with R&D Data

ARAPUCA

• Efficiency	at	LNLS:
– Simulation:	(1.5±0.3)%
– Measured:	(1.10±0.15)%

• Efficiency	at	TallBo
– Simulation:	(0.6±0.2)%
– Measured:	(0.77±0.05)%

• Cross-talk	and	after-pulsing	not	
corrected	for.

General Light Guide

• Reproduced	attenuation	behavior	of	
double-shift	light	guide.
– Variation	in	plate	quality	means	some	

freedom	in	absolute	scaling.

• Efficiency	at	TallBo
– Simulation:	1.1%
– Measured:	0.77%

• Simulation	30%	high	– keep	this	
correction	in	later	simulations.
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For	the	rest	of	the	talk,	
efficiency	→	“effective	area”	(efficiency	× area)
since	PDS	designs	have	some	variation	in	sensitive	

area,	particularly	between	detectors.



Extrapolation to Far Detector Designs
• Straightforward	modifications	of	the	ProtoDUNE	double-shift	
light	guide	design.
– Shorter,	wider	sections.
– Comparison	of	side	vs.	end-mounted	SiPMs.

• Effective	area:	~14	cm2
– ProtoDUNE	PDs	have	an	Aeff of	~5	cm2

• Not	a	baseline	design,	but	including	as	a	reference	point	for	
detector	performance	we	are	very	confident	can	be	achieved.
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Extrapolation to Far Detector Designs
• Previous	ARAPUCA	designs	have	been	single-sided.
• Double-sided	ARAPUCA	efficiency	has	been	estimated	in	
both	simulations.
– ARAPUCA	Simulation:	47	cm2

• 12	SiPMs/cell
– Light	Guide	Simulation:	23	cm2

• 8	SiPMs/cell
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Extrapolation to Far Detector Designs

• X-ARAPUCA,	the	baseline	design,	uses	ideas	from	both	the	
ARAPUCA	and	light	guide	designs.

• The	Light	Guide	simulation	predicts	an	Aeff of	48	cm2.
• Also	shows	equivalent	performance	with	48	SiPMs on	4	
ends	as	with	192	SiPMs along	the	sides.
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Overview of System Simulation
• We	generate	24,600	128	nm	γ’s	per	MeV.

– 41	kγ × 0.6	(yield	@	500	V/cm)[1]
– Includes	ArgoNeuT recombination	effects

• Light	is	transported	to	photon	detectors	via	
a	Photon	Library.	Uses:
– Rayleigh	scattering	length	~60	cm	for	VUV

• This	is	a	moving	target	in	the	literature,	so	
using	a	conservative	choice.

– Long	absorption	length	(20	m)
• Equiv:	low	N2 contamination

– 25%	reflectivity	from	Al,	steel

• Working	in	a	small	geometry	6	APAs	long.
– Large	enough	to	contain	flashes	produced	in	

the	middle	sections.
– Small	enough	that	a	library	can	be	generated	

for	it.

• Scintillation	time	constants:	
– 30%	fast	(6	ns)
– 70%	slow	(1.6	µs)
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[1]	Doke et	al.	Jpn.	J.	Appl.	Phys.	41,	1538	(2002)



Overview of System Simulation

• Build	up	waveforms	with	simulations	of	the	sensors	and	electronics.

• SiPM

– Single	PE	shape	from	3	Sensl SiPMS passively	ganged

– Add	Dark	current:	assumed	10	Hz/channel	until	now

– 20%	cross-talk	probability,	No	afterpulsing

• Electronics

– SSP	leading-edge	discriminator,		0.5	PE	threshold

– Random	noise	on	each		sample,	assume	signal-to-noise	of	7	until	now 11
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Photon Detector Reconstruction
• Hit	finding:

– Identify	peaks	on	each	channel	
separately

– Overlapping	peaks	are	merged	together

• Flash	finding:
– Look	for	coincidences	in	time	across	
channels.

– Currently	does	not	require	hits	close	in	
space,	but	the	small	geometry	
approximates	this	effect.

• Flash	matching:
– In	any	given	event,	there	will	be	
numerous	flashes	from	radiological	
backgrounds.

– The	“match”	is	the	largest	flash	within	
2.4	m	of	the	vertex	in	the	Y-Z	plane.

12

SNν

Background



Simulation Assumptions and Caveats
• Studies	up	until	now	had	some	assumptions	which	we	
think	are	overly	optimistic	for	the	current	baseline:
– Signal/noise:	7
– Dark	rate/channel:	10	Hz
– Digitization	at	128	MHz

• Library:
– Voxels	are	5	cm	× 10	cm	× 6	cm:	Large	on	the	scale	of	the	PDs	
in	Y,	so	simulation	is	off	when	very	close	to	the	APA.
• Only	real	solution	is	to	move	away	from	photon	libraries.
• We’ve	been	working	on	that	for	more	than	a	year,	but	it	is	
challenging	to	do.

– Timing	simulation	not	accurate	to	better	than	10	ns	since	
photon	transport	time	not	considered.
• This	is	an	upgrade	under	active	development,	may	be	available	
between	now	and	the	TDR.
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Plans for Updated Simulation
• New	simulation	is	being	produced	now	which	better	reflects	the	
baseline	design	and	likely	variations	covering	pessimistic	and	
optimistic	assumptions.

– Baseline	digitization	frequency:	80	MHz
– Light	yield:	15	cm2 – 60	cm2

• 15	cm2 is	simple	improvements	to	double-shift	light	guide	from	protoDUNE
• 60	cm2 is	past	best	estimate	of	X-ARAPUCA

– Dark	rate:	10	Hz	– 1	kHz
– Signal	to	Noise:	3	– 7

• These	cover	previous	optimistic	assumptions	to	worse	than	current	expecations

– Reflector	foils:	optimistic and	pessimistic
• Exact	performance	of	these	devices	not	known	yet,	so	trying	to	cover	likely	
range.

• Prioritizing	supernova	samples	since	that	is	where	we	need	new	
simulation	to	reach	conclusions	on	new	requirements.
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Developing New Requirements for the TDR
• We	are	in	the	process	of	updating	the	detector	requirements for	the	TDR,	

based	on	an	more	complete	set	of	physics	requirements.
– Detector	requirement:	a	capability	the	detector	component	needs	to	have	(light	
yield,	noise,	etc.)

– Physics	requirement:	a	capability	we	need	to	reach	DUNE	physics	goals	(trigger	
efficiency,	resolution,	etc.)

• We	will	look	now	at	the	new	set	of	physics	requirements.

• We	are	in	the	process	of	flowing	down	the	physics	requirement	to	
detector	requirements.
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T0 for Nucleon Decay Events
• Physics	Requirement: The	PDS	must	be	able	to	determine	T0	with	better	

than	1	µs	resolution	for	events	with	visible	energy	>	200	MeV	 throughout	
the	active	volume.
– This	is	the	region	for	nucleon	decay	and	atmospheric	neutrinos.	
– The	time	measurement	is	needed	for	event	localization	for	optimal	energy	

resolution	and	rejection	of	entering	backgrounds.	
– The	resolution	is	required	for	comparable	spatial	resolution	to	the	TPC	along	the	

drift	direction.

• This	creates	detector	requirement	for	
light	yield,	but	would	also	benefit	from	
increased	uniformity.

• Existing	requirement:	0.5	PE/MeV	
throughout	the	detector	volume.
– Requirement	came	from	MC-truth	studies.
– This	corresponds	to	a	detector	with	

23	cm2 effective	area.
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• This	is	an	updated	study	with	full	simulation	and	reconstruction	of	nucleon	
decay	events.
– The	requirement	is	really	on	background,	not	signal,	but…
– It’s	more	efficient	to	simulate	signal	which	should	be	representative	of	
problematic	backgrounds.

• Confirms	the	detector	requirement	of	23	cm2 effective	area	detectors	or	
0.5	PE/MeV	throughout	the	volume.
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Effective Area 
(cm2)

Mis-ID Rate 
at CPA (%)

4.05 6.2 ± 0.4

5.10 5.0 ± 0.4

7.44 3.2 ± 0.4

12.8 2.3 ± 0.4

15.0 1.6 ± 0.2

23.0 1.1 ± 0.2



T0 from Light-TPC Matching for Supernova Neutrinos
• Physics	Requirement:	The	PDS	must	be	able	to	provide	T0	determination	with	

better	than	1	µs	resolution	for	at	least	60%	of	neutrinos	in	a	typical	supernova	
energy	spectrum.
– Matters	primarily	for	a	nearby	supernova	where	statistics	are	high.
– T0’s	improve	TPC	energy	resolution	by	allowing	for	drift	attenuation	correction.
– The	faster	timing	resolution	also	allows	short	time	features	(ms)	to	be	resolved	more	

easily.

• What	does	60%	efficiency	mean	in	terms	of	detector	performance?
– Corresponds	to	an	effective	area	of	4.05	cm2 – ProtoDUNE-type	light	guides.
– Or,	>0.5	PE/MeV	for	at	least	60%	of	the	detector	volume.
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• Some	photon	detectors	make	
a	big	improvement.
– Compare	color	to	black.

• However,	once	a	majority	are	
drift	corrected,	little	
additional	benefit.
– Compare	other	colors	to	red	
(100%	efficiency).
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• Using	the	“notch”	before	
neutronization	as	a	sample	
ms-scale	feature.

• Again,	a	visible	improvement	
going	from	none	to	some.
– Green	to	other	colors.

• However,	little	improvement	
past	60%	efficiency

Time (s)



Supernova Burst Triggering
• Physics	Requirement: The	PDS	must	be	able	to	trigger	on	supernova	

bursts	in	our	galaxy	and	the	Large	Magellanic Cloud	with	efficiency	similar	
to	the	TPC,	with	a	false	positive	rate	of	less	than	one	per	month.
– For	distant	SNBs,	the	challenge	is	triggering	on	them.	Most	physics	will	be	limited	by	

statistics	rather	than	resolution.
– We	want	redundant	triggers	to	reduce	the	risk	of	missing	so	rare	an	event.
– 1/month	fake	rate	limit	is	imposed	by	DAQ	and	data	handling	concerns.

• Creates	detectors	requirements	for	light	yield	and	benefits	from	
improved	uniformity.
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• Thick	red	line	is	perfect	efficiency
• 4	detector	performances	shown	here:

– 4	cm2,	7	cm2,	15	cm2,	23	cm2

• ~100%	efficiency	throughout	the	galaxy.
• Now,	neither	the	TPC	nor	the	PDS	is	100%	efficiency	for	the	LMC.

– PDS	is	~10%	and	TPC	(not	shown)	is	~50%
– Expecting	improvements	from	higher	efficiency	and	reflector	foils. 21



PDS Calorimetry for Supernova Neutrinos
• Physics	requirement:	The	PDS	should	be	able	to	provide	a	calorimetric	

energy	measurement	for	low	energy	events,	like	supernova	neutrinos,	
complementary	to	the	TPC	energy	measurement.
– Improved	energy	resolution,	up	to	the	fundamental	limits	imposed	by	invisible	

particles	in	the	interaction,	will	enable	us	to	extract	the	maximum	physics	from	a	
supernova	burst.	

– With	energy	resolution	comparable	to	the	TPC,	full	advantage	can	be	taken	of	the	
anti-correlation	between	the	emission	of	light	and	charge	signals	imposed	by	the	
conservation	of	energy.

• Creates	detector	requirements	for	light	yield	and	benefits	from	
improved	uniformity,	calibration,	and	knowledge	of	LAr properties.
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20-25%	resolution	with	
23	cm2 PDS	efficiency



PDS Calorimetry for Beam Neutrinos
• Physics	Requirement:	The	PDS	should	be	able	to	provide	a	calorimetric	

energy	measurement	for	high	energy	events,	like	neutrinos	from	the	LBNF	
beam,	complementary	to	the	TPC	energy	measurement.
– Neutrino	energy	is	an	observable	critical	to	the	success	of	the	oscillation	physics	

program.
– A	second	independent	measurement	can	provide	a	cross-check	which	reduces	

systematic	uncertainties	or	directly	improves	resolution	for	some	types	of	events.
• Creates	a	detector	requirement	for	dynamic	range,	and	benefits	from	

improved	uniformity,	improved	knowledge	of	LAr properties.
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Goal: Michel Electron Tagging
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• Physics	Goal:	The	PDS	should	be	able	to	identify	Michel	electrons	
from	muon	and	pion	decays.
– The	identification	of	Michel	electrons	can	improve	background	
rejection	for	both	beam	neutrinos	and	nucleon	decay	searches.	

– Some	Michel	electrons	are	difficult	to	identify	with	the	TPC	since	they	
appear	simultaneous	within	the	TPC’s	time	resolution	and	colinear	with	
their	parent.

• Not	a	requirement since	we	have	no	studies	in	hand	so	far.
– Was	not	considered	a	realistic	option	until	recently	when	more	capable	
detectors	looked	like	a	real	possibility.

• Would	create	a	detector	requirement	for	light	yield,	and	require	that	
the	electronics	record	the	detailed	time-structure	of	the	light.
– Simplest	solution	is	waveform	readout,	though	online	deconvolution	of	
the	SiPM response	could	work	as	well.

– Doping	with	Xe to	reduce	the	late	light	would	also	be	a	benefit.



Detector Requirements to Verify with R&D
• Determine	absolute	detector	efficiency

– Or	relative	efficiency	to	a	design	with	a	known	absolute	
efficiency.

• Demonstrate	the	detectors	can	be	calibrated
– Gain	by	identifying	single	PE’s,	stability	using	flashing	system

• Signal-to-noise	in	the	baseline	electronics
• Time	resolution	with	baseline	sensors	and	ganging
• Dark	current	in	the	ganged	SiPM array
• Data	rates	within	limits	from	the	electronics

– By	necessity	this	will	need	to	be	an	extrapolation	since	it	is	
difficult	to	replicate	the	conditions	of	an	underground	
detector	on	the	surface.
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Conclusions
• The	current	baseline	design	with	X-ARAPUCAs	and	Mu2e-
style	electronics	meets	the	requirements	for	nucleon	
decay	and	beam	neutrinos.

– >99%	T0	efficiency	for	NDK	events
– Sufficient	dynamic	range	for	>99%	of	beam	ν’s

• New	supernova	physics	requirements	have	been	defined

– Covering	triggering,	T0	determination,	and	calorimetry
– New	simulation	is	being	produced	now	to	flow	these	physics	
requirements	down	to	precise	detector	requirements.

• We	will	also	explore	the	potential	benefits	of	and	paths	to	
improved	uniformity.
– Full	simulation	studies	with	reflector	foils.
– Some	initial	looks	at	uniformity	with	Xe doping.
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Backups

27



• Why	only	dynamic	range?

• Energy	resolution	will	be	more	limited	by	knowledge	of	attenuation	in	LAr
than	photon	counting	statistics.

• The	only	design	consideration	now:	don’t	make	things	worse	by	having	the	
electronics	saturate	with	high-energy	events.

• For	DUNE	we	will	need	improved	knowledge	of	LAr optical	properties.
– This	effort	being	undertaken	by	a	number	of	groups	in	the	US	and	Europe.
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Photosensor Properties in Stand-alone Simulations

• PDE	used	is	based	on	the	Sensl SiPMs,	but	is	relatively	
similar	to	that	expected	from	other	manufacturers.
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