with: Dave Warner, Jon Ameel, Gustavo Cancelo, Rory Fitzpatrick, Chris Barnes, Matt Toups, Sten Hansen, Dante Totani, Joel Mousseau, Alex Himmel, and others

30% DUNE Design Review, 11/12/2018 Josh Spitz, University of Michigan

PD front-end electronics

Introduction

- Commercial ADCs used in ultrasonic transducers (Texas based mu2e cosmic ray veto scintillator. Instruments) are being used for digitization in the SiPM-
- Low noise, high gain, high dynamic range.
- 80 Megasamples per second, 12 bit
- envisioned DUNE MPPC (SiPM) warm-side PD signals. Low cost (\$50/channel) and capable of handling the

Warm-side electronics elements

- Warm-side FEB
- 64 channels of 80 MS/s, 12 bit ADCs
- Bias generator (for SiPMs; 80 V max)
- Current measurement (100pA resolution) for IV curves of SiPMs
- Power-over-ethernet power (600 mA) for entire board's power. One Cat6-cable for data and power
- 1 GB DRAM data buffer, divided in 4 places (256 MB each) on the board, corresponding to the 4 FPGAs
- Parallel flash ROM for fast FPGA re-load (50 ms)
- Low cost, high bandwidth HDMI used to connect to cold-side
- Readout controller
- 24 FEB link ports. Supplies timing, trigger, and power to FEBs
- Can produce (e.g. TPC) triggers and also accept external (e.g. accelerator) triggers

(64 channels, 80 MS/s, 12 bit) Front-end board

4

Courtesy of Sten Hansen

Adapted from Sten Hansen

programmable gain amp, programmable low pass filter, 80 MS/s, 12 bit ADC, \$8 per channel, 120 mW per channel. Can adjust gain so that 1pe=10 ADC Eight channels of: low noise preamp, variable gain amp,

Commercial ultrasound ADC

 \sim

Controller

Controller w/ one FEB

Controller w/ two FEBs

Readout Controller Block Diagram

10

Courtesy of Sten Hansen

ᅼ

Courtesy of Sten Hansen

DAQ concept

- over copper to a master controller (DC isolated on both sides). 12 FEBs referenced to a single chassis, each FEB communicates
- channels). Each controller can take digital inputs from 24 FEBs (64 channels each->1536 channels, or in the case of 40 channels each->960
- Controller provides power (48 V supply) to FEBs.
- Controller connects to a DAQ PC either over fiber optic or ethernet (copper)
- Pulses (timestamp and pulse height) are sent from FEBs to controller. Controller issues global trigger to FEBs

Can the FEB work with the active summing board?

(yes)

Bench-top tests

(in cold) Bias for op-amp and MPPCs provided by external DC power supply

while the FEB has a single-ended op-amp. Need to "undifferentiate" signal with balun MPPC=Hamamatsu S13360-6050VE

each of 12 rows has 6 of 6mm² MPPCs in parallel total capacitance of 7.8 nF per row

72 MPPC array test

Successfully demonstrated single photon resolution!

Comparable resolution measured as peak-to-width ratio

-20

Average waveforms

- Rise time: 125 ns
- Fall time: 350 ns

as the FEB allows

- Recovery time: O(2us) what's shown on the right is as wide a window
- 17

Zero-suppression

- Zero suppression: Time tick is saved to the board's RAM if the tick is above a pre-set pedestal value
- mu2e and SBND will use the FEB+controller to take zerosuppressed data
- FEB+controller zero suppression interface work is ongoing.
- Work towards fully understanding the zero-suppression (suppression factor) requirements is ongoing.
- Dependent on readout window and overall trigger rate.

Bandwidth and rates

- Bottleneck is 10MB/s FEB to controller rate (per FEB).
- Currently considering 40 readout channels per board.
- 80 MHz, 12 bit ADC; 5.5 us waveforms=5.3 kbit/waveform
- Consistent with longest waveforms (including late-light) expected
- DC rate: 250 Hz/channel; 53 Mbps/APA (1 APA=40 channels)
- 6.6 MB/s FEB to controller DC rate (compare to 10 MB/s FEB-controller bottleneck)
- Can develop multi-channel coincidence+threshold requirement at the FEB firmware level to mitigate (study ongoing)
- DAQ interface spec: 8Gbps per connection. DAQ takes 24 FEB signals (10 Mbps each)=240 Mbps. Ok!
- Maximum instantaneous rate: 6000 channels fire at once
- 32 Mbits (4 MB) at once.
- and could likely be increased to 400 MB/s with some work (according to Sten Hansen) The controller can handle all 24 boards firing at once. Write speed for 24 boards is 150 MB/s

-irmware development

Source: "FPGA Design Flow Overview", Xilinx Website.

Xilinx ISE: This is a design environment used to design firmware written in VHDL for use in Field-Programmable Gate Arrays (FPGAs). The ISE ("Integrated Synthesis Environment") version, 14.7, is the last available version that works with a Spartan 6 FPGA.

languages, distributed by Mentor Graphics. The version, 10.2c, is the version that works ModelSim: This is a simulation environment for VHDL and other hardware description with the ModelSim license at Fermilab.

Structure of the Firmware

The firmware is written in VHDL, called "Very High Speed Integrated Circuit Hardware Description Language".

The firmware is separated into three components:

- <u>-</u> Main Firmware File (extension "vhd"): contains the logic for piping data into the FEB and out to the controller.
- N the signals that the logic in #1 handles. Test Bench (extension "tb"): contains the timing structure for each of
- ω the ports on the FEB and the signals within #1. Constraints File (extension "ucf"): contains the associations between
- 4 Project Definitions File (extension "vhd"): defines iterators and constants that are used within #1.

The remainder of the firmware consists of the functional models of components that are called within #1.

Initially written for mu2e->adapting it for DUNE (ongoing work)

Power considerations

- In addition to digitizing the SiPM signals, the FEB is nominally designed to bias the SiPMS.
- Can the power be used for the active summing board as well?
- board. Walton should not be used to bias the differential amplifier of the summing No, it does not provide a stable enough voltage. The on-board Cockroft-
- How to handle this?
- Redesign on-FEB power supply?
- Include another cable/wire in design?
- We are working to address this.

Rack space and power consumptions

- 6000 channels total; assume 40 channels/FEB
- 12 FEB/chassis, 13 chassis (6u each) required for FEBs
- 7 controllers (controlling 24 FEB each), 1 u each.
- racks ~85u required. Assuming 42u/rack, we will need just over 2
- Power supply on a controller is 700 W, each FEB takes 20 W.

Other option (optical from controller to DAC

25 5

Alternative front-end (in ProtoDUNE)

- Argonne SSPs (150 MS/s, 14 bit) [comparing to 80 MS/s, 12 bit]
- Higher cost with significantly more utility
- Multiple onboard utilities for online signal characterization
- Used in ProtoDUNE (288 channels)

From Zelimir Djurcic

Main issues moving forward

- Demonstrate full FEB+controller+DAQ chain (and merging with TPC info) in ICEBERG.
- Develop solution for active summing board's power.
- Possible board re-designs
- 48 channel board re-design (from 64 channels)?
- 40 channels (1 APA) + 8 spare?
- Power scheme, including both MPPC and active summing board bias?
- Cat6 instead of HDMI?
- Explore the possibility of using DC power input to the controller (perhaps from a Weiner supply), in consideration of noise issues
- Develop firmware and zero-suppression (including multi-channel coincidence+threshold on FEB) scheme.
- Considerations: DC rate, radiogenics rate, maximum instantaneous rate