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Introduction

e Commercial ADCs used in ultrasonic transducers (Texas
Instruments) are being used for digitization in the SiPM-
based mu2e cosmic ray veto scintillator.

e Low noise, high gain, high dynamic range.
e 80 Megasamples per second, 12 bit

e Low cost ($50/channel) and capable of handling the
envisioned DUNE MPPC (SiPM) warm-side PD signals.



Warm-side electronics elements

e Warm-side FEB
e 64 channels of 80 MS/s, 12 bit ADCs
e Bias generator (for SiPMs; 80 V max)
e Current measurement (100pA resolution) for IV curves of SiPMs

* Power-over-ethernet power (600 mA) for entire board’s power. One Cat6-cable for data and
power.

1 GB DRAM data buffer, divided in 4 places (256 MB each) on the board, corresponding to the
4 FPGAs

e Parallel flash ROM for fast FPGA re-load (50 ms)

e Low cost, high bandwidth HDMI used to connect to cold-side
* Readout controller

* 24 FEB link ports. Supplies timing, trigger, and power to FEBs

e Can produce (e.g. TPC) triggers and also accept external (e.g. accelerator) triggers

3 Adapted from Sten Hansen



Front-end board
(64 channels, 80 MS/s, 12 bit)
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Front-end board
(64 channels, 80 MS/s, 12 bit)
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Commercial ultrasound ADC

SPI IN AFES807 (1 of 8 Channels) SPI OUT
1™ SPI Logic i
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Eight channels of: low noise preamp, variable gain amp,
programmable gain amp, programmable low pass filter, 80 MS/s, 12 bit ADC,
$8 per channel, 120 mW per channel. Can adjust gain so that 1pe=10 ADC
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Controller w/ two FEBs




Readout Controller Block Diagram
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Power and Data Link Arrangement
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DAQ concept

12 FEBs referenced to a single chassis, each FEB communicates
over copper to a master controller (DC isolated on both sides).

Each controller can take digital inputs from 24 FEBs (64 channels
each->1536 channels, or in the case of 40 channels each->960
channels).

Controller provides power (48 V supply) to FEBs.

Controller connects to a DAQ PC either over fiber optic or ethernet
(copper).

Pulses (timestamp and pulse height) are sent from FEBs to
controller. Controller issues global trigger to FEBs.
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Can the FEB work with the
active summing board?

(ves)
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Bench-top tests

SiPM Power OpAmp

Supply Power Supply

Laptop for DAQ

A

F

EB

Gustavo’s board

Op-amp output is differentiated,
while the FEB has a single-ended op-amp.
Need to “undifferentiate” signal with balun

(in cold)
Bias for op-amp and MPPCs provided

by external DC power supply
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72 MPPC array test
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Successfully demonstrated
single photon resolution!
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ADC
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e Recovery time: O(2us) — what’s shown on the right is as wide a window

as the FEB allows
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Zero-suppression

e Zero suppression: Time tick is saved to the board’s RAM if
the tick is above a pre-set pedestal value.

e mu2e and SBND will use the FEB+controller to take zero-
suppressed data.

 FEB+controller zero suppression interface work is
ongoing.

* Work towards fully understanding the zero-suppression
(suppression factor) requirements is ongoing.

* Dependent on readout window and overall trigger rate.
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Bandwidth and rates

Bottleneck is 10MB/s FEB to controller rate (per FEB).
» Currently considering 40 readout channels per board.
80 MHz, 12 bit ADC; 5.5 us waveforms=5.3 kbit/waveform
e Consistent with longest waveforms (including late-light) expected
DC rate: 250 Hz/channel; 53 Mbps/APA (1 APA=40 channels)
* 6.6 MB/s FEB to controller DC rate (compare to 10 MB/s FEB-controller bottleneck)

e Can develop multi-channel coincidence+threshold requirement at the FEB firmware level to
mitigate (study ongoing).

DAQ interface spec: 8Gbps per connection. DAQ takes 24 FEB signals (10 Mbps each)=240
Mbps. Ok!

Maximum instantaneous rate: 6000 channels fire at once
e 32 Mbits (4 MB) at once.

* The controller can handle all 24 boards firing at once. Write speed for 24 boards is 150 MB/s

and could likely be increased to 400 MB/s with some work (according to Sten Hansen).
19



iIrmware development

Design Design Verification
Entry «
Behavioral
Simulation
Design »
Synthesis
Functional
Simulation
Design Static Timing
Implementation Analysis
Back | Timing
| Annotation Simulation
Xilinx Device In-Circuit
Programming Verification

Source: “FPGA Design Flow Overview”, Xilinx Website.

Xilinx ISE: This is a design environment used to design firmware written in VHDL for use
in Field-Programmable Gate Arrays (FPGAs). The ISE (“Integrated Synthesis
Environment”) version, 14.7, is the last available version that works with
a Spartan 6 FPGA.

ModelSim: This is a simulation environment for VHDL and other hardware description
languages, distributed by Mentor Graphics. The version, 10.2¢, is the version that works
with the ModelSim license at Fermilab.
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Structure of the Firmware

The firmware is written in VHDL, called “Very High Speed Integrated
Circuit Hardware Description Language”.

The firmware is separated into three components:

1. Main Firmware File (extension “vhd”): contains the logic for piping
data into the FEB and out to the controller.

2. Test Bench (extension “tb”): contains the timing structure for each of
the signals that the logic in #1 handles.

3. Constraints File (extension “ucf”): contains the associations between
the ports on the FEB and the signals within #1.

4. Project Definitions File (extension “vhd”): defines iterators and
constants that are used within #1.

The remainder of the firmware consists of the functional models of components that are
called within #1.

Initially written for mu2e->adapting it for DUNE
(ongoing work)
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Power considerations

* |n addition to digitizing the SiPM signals, the FEB is nominally designed to bias
the SIPMS.

e Can the power be used for the active summing board as well?

* No, it does not provide a stable enough voltage. The on-board Cockroft-
Walton should not be used to bias the differential amplifier of the summing
board.

 How to handle this?
e Redesign on-FEB power supply?
e Include another cable/wire in design?
* We are working to address this.
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Rack space and power
consumptions

6000 channels total; assume 40 channels/FEB
12 FEB/chassis, 13 chassis (6u each) required for FEBs.
7 controllers (controlling 24 FEB each), 1 u each.

~85u required. Assuming 42u/rack, we will need just over 2
racks.

Power supply on a controller is 700 W, each FEB takes 20 W.
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Grounding scheme
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Other option (optical from
controller to DAQ)
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Alternative front-end (SSP)

(in ProtoDUNE)
e Argonne SSPs (150 MS/s, 14 bit) [comparing to 80 MS/s, 12 bit]
* Higher cost with significantly more utility

* Multiple onboard utilities for online signal characterization

* Used in ProtoDUNE (288 channels) JINST 11 P05016 (2016)
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lternative front-end (SSP)
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Main issues moving forward

e Demonstrate full FEB+controller+DAQ chain (and merging with TPC info) in ICEBERG.
* Develop solution for active summing board’s power.
* Possible board re-designs
¢ 48 channel board re-design (from 64 channels)?
e 40 channels (1 APA) + 8 spare?
* Power scheme, including both MPPC and active summing board bias?
¢ (Cat6 instead of HDMI?

» Explore the possibility of using DC power input to the controller (perhaps from a Weiner supply), in
consideration of noise issues.

* Develop firmware and zero-suppression (including multi-channel coincidence+threshold on FEB) scheme.

* Considerations: DC rate, radiogenics rate, maximum instantaneous rate
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