
L. Yates︱LArSoft Coordination Meeting

Multiple Subrun MC 
POT Counting Bug Fix

Lauren Yates
LArSoft Coordination Meeting

September 25, 2018

"1



L. Yates︱LArSoft Coordination Meeting

Description of the Bug
• MicroBooNE has recently started generating MC files with 

multiple subruns in a file 

‣ Why? Briefly — MicroBooNE is moving towards using cosmic data 
overlay on neutrino MC, instead of simulated cosmic rays; MC events 
inherit the (run, subrun, event) from the overlaid cosmic data event; 
some data files have more than one subrun per file 

• For MC files with multiple subruns, the POT value reported by the 
generator sumdata::POTSummary data product is incorrect 

• For the nth subrun in the file, the POT reported is actually the POT 
for all subruns 1 through n

"2



L. Yates︱LArSoft Coordination Meeting

Description of the Bug
• At the end of each subrun in the file, the endSubRun function in 

larsim’s GENIEGen_module.cc is called 

• This fills the sumdata::POTSummary data product based on the 
TotalExposure variable from the GENIEHelper object

"3



L. Yates︱LArSoft Coordination Meeting

• The GENIEHelper class defined in nutools’s GENIEHelper.cxx 

• The TotalExposure variable is set to 0 when GENIEHelper 
object is initialized, but is never reset after that 

‣ Only ever updated in Stop function, which adds POT from each event

Description of the Bug

"4

…

Not applicable to MicroBooNE, but similar…

…



L. Yates︱LArSoft Coordination Meeting

Description of the Fix
• Bug is essentially that larsim’s GENIEGen EndSubRun function 

implicitly assumes that nutools’s GENIEHelper TotalExposure 
variable will contain only POT relevant to that subrun 

• For MC files with multiple subruns, this assumption is false 

• Fix is to update the way larsim uses TotalExposure variable to 
fill each subrun’s POT 

• Code now gets TotalExposure at beginning of the subrun, 
stores its value, gets it again at the end of the subrun, and fills the 
generator sumdata::POTSummary data product based on 
the difference between the two 

• POT reported for that subrun is then just the POT associated with 
events in that subrun

"5



L. Yates︱LArSoft Coordination Meeting

• In definition of GENIEGen class in larsim’s GENIEGen_module.cc, 
add public beginSubRun function and private variables for 
storing POT from previous subruns 

• Maintain existing functionality for distinguishing between total 
POT and total good POT, although this seems not used for MC

Description of the Fix

"6

…



L. Yates︱LArSoft Coordination Meeting

Description of the Fix
• In the GENIEGen beginJob function, just after GENIEHelper 

object is initialized, set these new variables to zero

"7



L. Yates︱LArSoft Coordination Meeting

Description of the Fix
• In the new GENIEGen beginSubRun function, fill variables with 

the value reported by GENIEHelper TotalExposure

• This records the POT associated with any previous subruns

"8



L. Yates︱LArSoft Coordination Meeting

Description of the Fix
• Finally, subtract these values off from the TotalExposure 

before filling the sumdata::POTSummary data product 

• Ensures that the POT reported for that subrun is then just the POT 
associated with events in that subrun

"9



L. Yates︱LArSoft Coordination Meeting

Validation
•Validated by generating MC file with multiple subruns, using the same set of 

subruns (same input data file) with and without fix 

•After fix, see subrun POT in good agreement with expectations

"10

Before fix, subrun POT increasing

Typical difference ~6e15

After fix, subrun POT are independent

Typical value ~6e15, in good 
agreement with expectations



L. Yates︱LArSoft Coordination Meeting

Summary
• There is a bug in the MC POT counting for MC files with multiple 

subruns — unusual use case, but now used by MicroBooNE 

• Bug is essentially that larsim’s GENIEGen implicitly assumes that 
nutools’s GENIEHelper TotalExposure is POT for the subrun, 
but it is actually POT for that instance of GENIEHelper 

• Fixed storing the TotalExposure at the beginning of the 
subrun, subtracting it off from the TotalExposure at the end of 
the subrun to get the POT for just that subrun 

• Based on my validation, fix works as expected

"11



L. Yates︱LArSoft Coordination Meeting

Backup Slides

"12



L. Yates︱LArSoft Coordination Meeting

Work-Around for Analyzers
• When counting POT for an overlay file, take the POT for the file to 

be the POT reported by the generator sumdata::POTSummary 
data product for the last subrun

"13

• Caveat: Have to be extra careful when counting POT based on 
files produced by running over multiple input overlay files (i.e., 
the output of grid jobs run with multiple files per job)

To get POT for a typical 
file, would sum all of these

To get correct POT for an 
overlay file, just use this


