Event Generation on HPC

T.Childers¹, S.Höche², P.Hovland¹, S.Kuttimalai², S.Mrenna³, S.Prestel⁴, H.Schulz³

¹ANL, ²SLAC, ³FNAL, ⁴Lund University

SciDAC presentations to HEP

Zoom, 9/27/2018

Structure of event generators

- ► (N)LO Matrix Element (ME) generators BlackHat+Comix, MadGraph5, ...
- Parton showers (PS), mostly based on dipole/antenna picture
- Multiple interaction models possibly interleaved with shower
- Hadronization models string/cluster fragmentation
- Hadron decay packages
- Photon emission generators

Much of development focused on precision

Requires close interaction of ME & PS generators

Less than ideal for HPC & new architectures:

- Lots of program flow, many compute kernels
- Variable timing between different events

[Buckley et al.] arXiv:1101.2599

Short-distance cross sections

► Cross sections typically computed using Feynman graphs → factorial scaling reduced to exponential by dynamic programming & sampling of color / helicity configurations [Berends,Giele] NPB306(1988)759 [Duhr,Höche,Maltoni] hep-ph/0607057

► In addition: Multiple parton species & 3N-4 dimensional phase space

Process	W^-+0j	W^-+2j	W^- +4j	W^-+6j
Processes (mapped)	1 (1)	18 (42)	88 (324)	280 (1332)
RAM (per process)	< 1MB	1 (0.056) MB	23 (0.26) MB	435 (1.6) MB
Integration time	8s	22m 8s	1d 5h	32d 19h
MC uncertainty [%]	0.18	0.25	0.66	1.29

Timing on dual 18-core Intel® Xeon® E5-2699 v3 2.30GHz

▶ Project aims at scaling these calculations to >1k parallel nodes

- ► Constructed mini-app (850 lines python) for discussion with HPC experts
- Improved startup times by factor 10 over previous versions
- Working on new type of importance sampling

Event processing

- ► Short-distance cross section and QCD evolution linked at higher order in perturbation theory → cannot be simulated entirely independent
- Separation of event generation into hard process and parton shower jobs requires reconstruction of diagram topologies at parton shower stage

Event processing

- ► Main task is to decouple existing ME generators (BlackHat+Comix) from parton shower → write / read events in HDF5 format, and move reconstruction of PS topologies
- ▶ Read-in timing with dummy ME: Compare to PS topology setup → timing 1ms (W+2j) - 1s (W+6j)

► Working on first physics simulation: W[±]+ ≤ 8jets at LO ME-level event production costs rising sharply with multiplicity:

# of jets	0	1	2	3	4	5	6	7
CPUh/Mevt	0.23	1.0	48	180	2.5k	12k	48k	$\mathcal{O}(1M)$
Sample sizes	65M	32M	16M	8M	4M	2M	1M	TBD

Event processing costs to be determined

- Next steps:
 - ▶ $tt + \leq 6$ jets at LO
 - Work towards NLO