
FPGA co-processor

Patrick Dunne for the co-processor group

Introduction

- Co-processor will take care of data compression and trigger primitive generation
- Co-processor will also perform data buffering for supernova trigger
- Sits on FELIX cards and processes data from warm interface boards (WIBs) before it is passed to PCs

Requirements and specifications

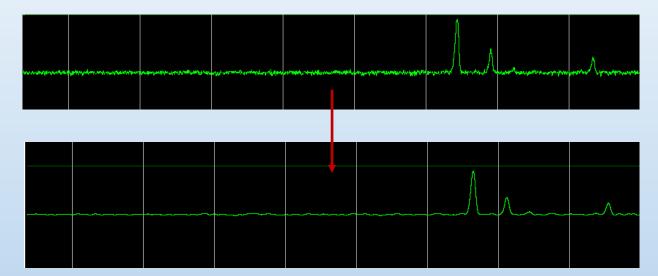
- On receipt of supernova trigger must be able to record 100s of full waveform data including O(10s) before the trigger signal
- Must buffer data until non-supernova trigger decision can be made and read out selected events to back-end
- Should compress data losslessly by at least a factor of 2
- Must form trigger primitives (filtered waveforms, hits etc.)
- Need a software framework that can control, configure and monitor the health of the board and detector via trigger statistics

Interfaces, constraints

- Input via FELIX card covers one APA using 10x10 Gb/s optical links from WIBs
 - Contains data from 2560 channels sampled at 2MHz 12 bit
- Board will contain 64 GB of DDR4 RAM for the O(10s) buffer
- Board will contain 2 NVMe SSDs for 100s buffer
 - Each drive has a 4x Gen3 PCIe interface
- Firmware and software currently being developed using a dev board
- Final production will be a daughter card mounted on FELIX


Key challenges

- Demonstrating correct/adequate performance with a realistic LArTPC
- Optimise split of functionality between FPGA and CPU given stringent power constraints
- Produce hardware with sufficient reliability to meet system requirements and verify this (i.e. design adequate QA processes)
- Most of these challenges can be met through extensive testing of the system at ProtoDUNE

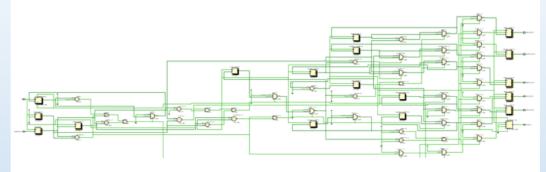

System design

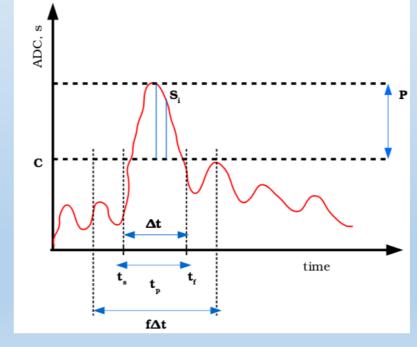
 Board will have parallel instances of TPG (15 instances) and Compression blocks (40 instances) each processing 64 channels

Filter/pedestal subtraction

- Filter is 32 tap FIR filter
- Firmware written and simulated
- Pedestal subtraction in development
- Resource use estimates indicate should fit in reasonable FPGA:

Imperial College

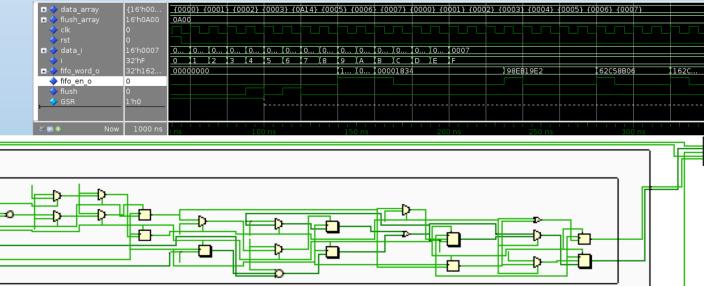

London


• 32-tap FIR (x15): 5.52% LUTs, 2.12% FFs, 8.69% DSPs (percentages of KU115 resources)

Hit finding

- Starts from filtered, pedestal subtracted samples
- Record peak height, length of hit, start of hit, integrated ADC
- Firmware synthesised and simulated
- Resource estimate suggests no problems
 - IO estimate below assumes 32 bit input (12 bit in final design)

Resource	Utilization	Available	Utilization %
LUT	514	242400	0.21
FF	420	484800	0.09
10	194	520	37.31
BUFG	1	480	0.21



Imperial College London

Compression

- Fibonacci encoding via LUT implemented in firmware and simulated
 - Encode delta from previous sample so most entries are zero
 - Compression factor depends on noise profile of samples
- Resource estimate suggests ~1% of Block RAMs used per compression stream
 - 40 instances should fit on the FPGA without issues

Validations so far

- Daughter board layout produced based on design initially made for previous version carrier board
 - Design revisions underway for prototype manufacture

• Firmware:

- Compression block (Imperial), hit finder (Bristol), filtering and pedestal subtraction (RAL) are written and simulated, integration ongoing
- Buffer controller (UCL) is being developed and simulated
- Initial resource estimates indicate it will fit in a cost-effective FPGA

Hardware: Development up to the EDR and production

- Early 2019:
 - Prototype based on current DPM design using FMC+ daughter-card format
 - Detailed specification of FELIX-daughter card mechanical interface
- Later 2019:
 - Second prototype based on lessons learned from first, final mechanical spec (FELIX) and production optimisations
 - Build testing platform
 - Medium-sized production O(20) boards
- 2020:
 - Third prototype with robustness and testability improvements, manufacturer final optimisations

Imperial College

London

- 2021:
 - Pre-production and QC implementation
- 2022-2023:
 - Staged production over 18 month timescale is achievable given past experience

Development plan up to the EDR – Integration/Firmware/Software

- Early 2019:
 - Firmware framework and algorithms slice tested on a development card
 - Ensure algorithms that fit FPGA meet physics requirements
- Later 2019:
 - Firmware interface for data IO to FELIX card designed, test platform to generate fake data built
 - Firmware ported to DUNE hardware daughter card
 - Prototype control software ready that allows O(20) boards to be used together
- 2020:
 - Production ready firmware, software and test platforms
 - Software work will focus on automation and integration with general DUNE backend electronics control framework
- Planning several slice tests as hardware/firmware is ready
 - All co-processor firmware on a development board 1)
 - Development board interfaced with FELIX and dummy WIB interface 2)
 - Co-processor daughter card hardware on FELIX with dummy WIB interface 3)
 - FELIX plus co-processor card interfaced to real WIB at ProtoDUNE perial College 4)

Summary

- We have a well understood specification
- The first iteration of hardware development is taking place now based on an existing layout
- The key question is do hardware constraints allow physics requirements to be met and we have a plan to answer this using ProtoDUNE
 - 2019: Test of concept using full slice of system
 - 2020: Testing of full system to check reliability is sufficient