

π^0 mass reconstruction in ICARUS

A. Menegolli
University and INFN Pavia (Italy)

Outline

- The ICARUS surface run of 2001 in Pavia (Italy)
- \triangleright Event selection for π^0 mass reconstruction
- Results
- \succ π^0 mass reconstruction with LNGS data (2010-2013)
- Conclusions

December 10th, 2018

π^0 event searches in LAr

- $\succ \pi^0$ reconstruction from the invariant mass of the two photons from $\pi^0 \rightarrow \gamma \gamma$ decay is one of the handles we have to distinguish veCC from vNC events in neutrino oscillation experiments.
- $\succ \pi^0$ events are also a good way to test e.m. shower reconstruction tools also for calibration purposes.
- In ICARUS we have already performed analysis of π^0 events from the two past runs: at surface (cosmics Pavia, 2001) and underground (CNGS LNGS, 2010-2013).

> Here few results based on ICARUS past experience are shown.

December 10th, 2018

The ICARUS surface run (2001 - Pavia)

Very first run of large scale LAr-TPC: first of the two ICARUS T600 module exposed to cosmic rays at surface in July 2001 (Pavia, Italy).

The ICARUS surface run (2001 - Pavia)

Very first run of large scale LAr-TPC: first of the two ICARUS T600 module exposed to cosmic rays at surface in July 2001 (Pavia, Italy).

- Demo run in an environment crowded of tracks, but first results on many aspects of LAr-TPC technology (electron life-time, LAr purity, multiple scattering, Michel electrons, space charge, π^0 mass reconstruction).
- Several trigger conditions (external scintillators, random triggers, internal PMT trigger).
- Seminal paper for LAr technology: S. Amerio et al., «Design, construction and tests of the ICARUS T600 detector», Nucl. Instr. Meth A527 (2004) 329–410.

- Automatic event selection tools not available at the time: visual scanning was a fundamental tool!
- \succ π^0 interactions searched in the cosmic sample with a visual scanning for events with at least two e.m. showers pointing to the interaction vertex.

- $\succ \pi^0$ events mainly due to hadronic interactions of cosmic rays.
- \triangleright Despite the surface run, many clear $\pi^0 \rightarrow \gamma \gamma$ were found.

- $\succ \pi^0$ events mainly due to hadronic interactions of cosmic rays.
- ightharpoonup Despite the surface run, many clear $\pi^0 \rightarrow \gamma \gamma$ were found.

- Automatic event selection tools not available at the time: visual scanning was a fundamental tool!
- \succ π^0 interactions searched in the cosmic sample with a visual scanning for events with at least two e.m. showers pointing to the interaction vertex.

December 10th, 2018

- Automatic event selection tools not available at the time: visual scanning was a fundamental tool!
- \succ π^0 interactions searched in the cosmic sample with a visual scanning for events with at least two e.m. showers pointing to the interaction vertex.
- Altogether, about 7500 images have been scanned by different groups. The majority of the events were collected with internal PMT triggers, rich in hadronic interactions.
- Selection rules adopted to cope with the crowded environment:
 - ✓ At least two, well separated electromagnetic showers originated by photons pointing to the interaction vertex in two views.
 - ✓ Unique t0 determination (note that at surface you can have many tracks out of trigger time).
 - Reject events with overlapping tracks from other cosmics.
 - ✓ Agreement between measurements performed by different groups.

- Dedicated (semi-automatic) tool developed to:
 - ✓ Mark the main hadronic interaction vertex and the two shower starting points directly on the Collection and Induction views.

- Dedicated (semi-automatic) tool developed to:
 - ✓ Mark the main hadronic interaction vertex and the two shower starting points directly on the Collection and Induction views.
 - ✓ Perform hit finding and reconstruction inside an surface defined by building a polygonal line around the shower directly on the Collection view.

- Dedicated (semi-automatic) tool developed to:
 - ✓ Mark the main hadronic interaction vertex and the two shower starting points directly on the Collection and Induction views.
 - ✓ Perform hit finding and reconstruction inside an surface defined by building a polygonal line around the shower directly on the Collection view.
 - ✓ Hit energy computed after inserting the calibration factor (from test pulse measurements) and other contributions: electron life time, recombination, reconstruction efficiency from FLUKA-Monte Carlo simulations).

- Dedicated (semi-automatic) tool developed to:
 - ✓ Mark the main hadronic interaction vertex and the two shower starting points directly on the Collection and Induction views.
 - ✓ Perform hit finding and reconstruction inside an surface defined by building a polygonal line around the shower directly on the Collection view.
 - ✓ Hit energy computed after inserting the calibration factor (from test pulse measurements) and other contributions: electron life time, recombination, reconstruction efficiency from FLUKA-Monte Carlo simulations).
- The π^0 is then reconstructed as: $M = \sqrt{2 E_1 E_2 (1 \cos \theta_{12})}$
 - \checkmark E₁,E₂ are the two photon shower energies.
 - \checkmark θ_{12} is the angle between the two showers, reconstructed from the directions evaluated from the marked points.

 \triangleright A total of 89 events was used for the analysis: 72 with two showers and 17 multi-showers, for a total of 97 π^0 candidates.

- \triangleright A total of 89 events was used for the analysis: 72 with two showers and 17 multi-showers, for a total of 97 π^0 candidates.
- First result: LAr photon radiation length from the 3D distance of the starting point of the shower from the main vertex.

$$X_{\gamma} = 17.4 \pm 0.8 \text{ cm} (X_{\gamma} = 9/7 X_0 = 18 \text{ cm})$$

- \triangleright A total of 89 events was used for the analysis: 72 with two showers and 17 multi-showers, for a total of 97 π^0 candidates.
- First result: LAr photon radiation length from the 3D distance of the starting point of the shower from the main vertex.
- \triangleright $\gamma\gamma$ system total energy and invariant mass distribution:

A. Ankowski et al., «Energy reconstruction of electromagnetic showers from π^0 decays with the ICARUS T600 liquid argon TPC», Acta Physics Polonica B Vol.41 (2010). http://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=41&page=103

LNGS data

- $\succ \pi^0$ search and reconstruction was again performed with ICARUS T600 data from LNGS underground run with CNGS beam.
- Very much cleaner environment with respect to Pavia surface data \rightarrow the sample used was the $\nu\mu$ CC data from 2011 and 2012 runs.

LNGS data

- $\succ \pi^0$ search and reconstruction was again performed with ICARUS T600 data from LNGS underground run with CNGS beam.
- Very much cleaner environment with respect to Pavia surface data \rightarrow the sample used was the $\nu\mu$ CC data from 2011 and 2012 runs.
- \triangleright All 1287 νμCC events were visually scanned to search for π⁰ → γγ decay events.
- \triangleright $\nu\mu$ CC MC sample with π^0 used to simulate:
 - ✓ energy resolution for the gamma shower
 - ✓ energy misidentification between the showers
 - \checkmark resolution for the opening angle θ .

 \triangleright 143 $\gamma\gamma$ candidates were accepted after the selection cuts.

 \triangleright 143 $\gamma\gamma$ candidates were accepted after the selection cuts.

- $m_{yy} = (134.5 \pm 1.5 \text{ [stat]} \pm 4.2 \text{ [syst]}) \text{MeV/c}^2$
- \checkmark π⁰ mass res. ≈ 9.5% (RMS = 12.8 ± 0.8 MeV/c²)
- ✓ 13 events of $\eta^0 \rightarrow \gamma \gamma$!

I. Kochanek, «Analysis of neutral pions from νμ CC CNGS interactions in the ICARUS detector», PhD Thesis (2015). https://sbc.org.pl/dlibra/publication/220536/edition/208391

Conclusions

- $\succ \pi^0 \rightarrow \gamma \gamma$ decay is one of the handles we have to distinguish veCC from vNC events and it is a invaluable tool for LAr data calibration.
- \triangleright ICARUS T600 performed the analysis of π^0 events twice, either at surface and in undeground environment.
- Pospite the difficult conditions, already at surface it was possible to measure the π^0 mass from a sample of events coming from cosmic interactions in LAr (RMS \approx 16%).
- The cleaner LNGS environment allowed to measure π^0 mass with a better resolution (RMS \approx 10%) with CNGS $\nu\mu$ CC events.
- \blacktriangleright In ICARUS-SBN, the 3m concrete overburden should give a LAr environment clean enough to have π^0 mass reconstructed with quality similar to LNGS.

