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o Spm:e‘?c;w tnkSolver
Event Slicing

Towards Pure 3D Pattern Recognition



Motivakiown

Wire readout LArTPCs provide exquisite high resolution 2D
images of events

Stereo imaqes allow for 3D recowmstruction

o Feature finding in 2D which are then matched to qet 3D kracks,
showers, etc,

o Use 2D “hit” information ko wmake 3D “space points” and then pernform
3D pattern recognition

Pros and Cons ko both approaches

o 2D feature finding techniques highly advanced but must deal with
many special cases (especially for surface TPCs

o In 3D the bulkk of the special cases disappear and track/shower
reconstruction should be “straightforward”... but of course first you
need a way to umambiguausij build 3D space Pmim&s

Believe 3D &F?F’rom‘:hes u&ima&&tv sup@.rwr and we should worlke
on d@.vai.c}!vur\g tools ko enable Ehem



Build Space Poinks:
Simpi@. Appraaak



Sivai@. Spaﬁe Poinks

o Driving philosophy is that one builds and keeps space points
from all “allowed” combinations of individual 2D hits

o Want high efficiency for “true” space points, willing to accept to
accept some level of “fake” space points to achieve goal

o In fact one has to accept that there are always ambiguous combinations

o Assume 3D level algorithms will resolve allowed ambigui&ies

o What are “allowed” combinations

o Hits on different planes, wires must intersect (cross) to make
combination

o 3 2D hits crossing must form the minimum size triangle

o Hits must agree in time

o Difference in peak times of 2D hiks within range defined by widkths

o The approach is simple, the worlk is in handling the
combinatorics



The Obvious Problems

o Creating space Fww\&s depemds cr&&&cauj on the
2D hit finding efficiency and quality

o Missing 2D hits will result in either missing space
points —or- (worse) the wrong space points

o Obviously, the 2D hit finding depends critically on
the sighal processing

o Building the “correct” space points from 2D hiks
also requires understanding inter-plane timing
offsets



The Obvious Pathologies

o Isochronous kracies

o Large numbers of 2D hiks will agree in time and
have qood values for the mebric above.

o Gemerattv, once the hits start to have a separa&an
on the order of the average width then the quality
metric starts to have value in sorting these ouk

o Distorted waveforms

o Primarily an issue for btracks running along the x
axis which create long pulse trains on small number
of wires

o How best to handle these for the purposes of
making 3D space paim&s ts skill an open qu@.s&mm



Spaﬁe Pounk Quat&gj Mekbkric
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o Build a guality metric which can be useful in the

downsktream recownstruckion:

o First compute weighted average time of the three 2D hits,
using this and the widths of the hits, form the sum of the
squares of the “pulls” of the three hits

o Can reject those with outright "bad” chi-square values

o Can be very useful in downstream disambiguation



E?xampi.@. ‘Bi;s[piavs

o Following example event disptavs ubilize the
ICARUS TPC simulakion/reconstruction
o Space point finding works with other TPCs
o e.9.was originally developed using MicroBooNE
o Also handles bad channels

o ICARUS is a more interesting example because it is a
mulki-Cryostat and mulit-TPC detector

o In the 3D event dispmvs, space points are color
coded according to the previously described metric

o Using a “heat map” - better values of metric are at
the red end of the spectrum, worse at the blue end



Spaaa [ac;m&s color coded

Il using a “heat map" scheme
T "m PPN btu’e ppoins the matris
is worse, Darker red means the
mekbric is bebber

Gemerati.j you can see thalb the
space points create ribbon-Lile
trajectories (.ge.v\erau.fj)

The color coding also illustrates
how the quality metric helps
visualize the center of the trajectory



Zoom to the region where the muon
s&aps and detajs to a Michel eleckron
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in the “better” space points in this region



Build Space Poinks:
SF?&C@. oink Solver



Spat‘:@. Poiuntk Solver

) ‘D‘*evetoped bfj Chris Backhouse "’Sprivxg/Summer 2017

o Goal here is to prefer building of space points from the
correct combinations of 2D hits - reduce the level of
ambiguity from the simple approach

o Starting point is the set of “simple” space points
o SpacePointSolver uses different metrics for making initial 3D points
o Then bry to resolve ambiguous space points using the charge

information of the hits

o Assume the collection PLQV\E charges have the “true” deposi?:ion ak
Ehat kime and posa&wv\

o Employ a minimization technique to distribute this charge among the
matched induction FLQM@. hiks

o Originally motivated by the WireCell though use of 2D

hits leads to a different and unique implementation
13



f&@.sai\/&v\g Ambigui&es

Iwires sites

minimize X2 = Z q; — Z Tiipj
J

I

gi = charge observed in the it induction hit
- T;; = 0 or 1, does site j contribute to hit /7
p; = charge predicted at site J

sites s
subject to p; > 0 for all j and ) Ujpj = Qi for all k |
,- ,

i Uik = 0 or 1 — does site j contribute to collection wire k7
Qx = total charge in the k™ collection hit to be distributed

Slide content from Chris Backhouse



Further Impravamemﬁ

> Remammg freedom while mamtamlng a convex problem, add terms |

sites

X° = x> =Y Vipipj

k

L > A term like ) . p; has no effect due to overall charge conservation

| » \/;; terms amount to L2 regularization — prefer one large hit to two
~ small ones

Nei ghbo rs
CollectionHit CollectionHit

Induct onHit \ J
> SpaceCharge SpaceCharge

> Pick Vj = 0.15e"i/2°™ arbitrarily I /

'> Rewards proximity of charges

InductionHit

| spaceCharge

» Overall strength set by trial and
error

InductionHit

SpaceCharge

InductionHit

Si.c,cl.a con&en& §rom L..hms Backhc«use




Nice exam[pte evenlk with a Meartj Lsochronous
track to illustrate the impact of the
minimization and reqularization

"k Ambiquous Space Points

. | ~ along a neartj isochronous
: tracke
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Spat’:@. Poiuntk Solver

o Chris Backhouse has made several presem&a&oms
own khis:

o LArSoft Coordinating Meeting Auqust 27, 2017: Link

d

Handling bad channels June ¥, 201%: Link

o SpacePointSolver module is imyiememﬁed LA
LArSoft with “standard” LArSoft data structures
as ou&pu&

D

Relatively straightforward to incoporate
SpacePointSolver into the ClustersD framework

Which malees ik easy ko compare against the standard
Clusker3d

17


https://indico.fnal.gov/event/15173/contribution/2/material/slides/1.pdf
https://indico.fnal.gov/event/17913/contribution/1/material/slides/0.pdf
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Generally, the creaked Space Points
now from a much narrower “ribbon”
than those from the simple approach

Same Evenk as on Slide 12
Now drawn wikh Space Poinks
Made wikh Spa\te.?oénﬁsotver
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Same Zoom parspac&ives as o
slide 13

Chris has continued to develop this with
further improvements to the algorithm as well
as including the ability to handle bad/dead channels



Event Slicing



What is Event Slicing?

o Surface LArTPCs present two main problems for 2D
reconstruction algorithms

o

Large number of tracks from cosmic ray background means
significant volume of data to process - uses significant cpu/
rmemory

Worse, cosmic ray tracks and debris often overlap signal events
and require significant special handling - Leads to
misconstruction and efficiency problems

o When viewed in 3D the phase space for overlap is
stgmiﬁtahﬂj reduced

D

An algorithm that can look at 3D space pc)u«\&s can seyara&@. ouk
the information specific to each of the interactions in the TPC

Can sigmi{iao\nﬂv improve perﬂfarmav\te - both cpu/memory and
overall efficiency

1



How ko Slice an Evenk

Start with a source of 3D hiks

) Cu.rreu&tj eibher sLmPLe or Space?oin&Scher

Cluster formation
o Initial clustering of space points - DBScan/kdTree
o Initial "analysis” of the event via Principal Component Analysis

o Enables Merqging “matching” clusters, arbitration of ghost clusters,
general cleanup

Resulting clusters represent "slices” of the overall event and
the corresponding 2D hits for each slice can now be tnput to
a 2D reconstruction algoribthm

Important to hote that 2D reconstruction algorithms dont
care about 3D space point ambiguities
Note: A similar a\[?:rcmch developed b; Ting jun using

Space?oLmESatve.r or 3D hits, DBScan for clusters, slices then
input to TrojCluster

R2



Projection Matching
Algorithm

The Projection Matching Algorithm (PMA) was originally developed to
determine the trajectory of tracks based on 2D hits tn each projection

o Concept of Principal Curves: here it simultaneously minimizes the
projection of a candidate brack ko hiks in each view but, importantly, does
not kry to get the order of hits correct between the views

It has since been cievetoped ko nclude “micro scale” Po&&erv\
recognition

o Example: given all the hits associated to a CR muon (and its daughters) it
should reburi the CR Eracie Erajec&orj and any delka rays that are also
“Erackable”.

This is the situation after the first round of clustering with the 3D
clustering

o ALl hits associated to a common object are in the “super cluster”, can use
the PMA to do the fine level pattern recognition to reconstruct the event

o Well... Ehis is turrev\ﬁj MOSTLY brue... some work needs to be done here...

Ik does not care about ambiquous 3D hits

R3



cluster Passec& to the
Projection Matching Algorithm

Note that in a purely “slicing”
mode ohe does ok really care
about ambiquities - so long as

they dont merqge otherwise
Lmdepes«ci@.m& clusters

,,,,,,
il

™ Head of PMA Track

Trajectory of PMA Track
given by tan colored points
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= Head of PMA Emm

; ijm:&orj‘? of PMA track

Worth noting the PMA failures in
this event display... this is due to
cieﬂfs,mewmes in the current interface

| and hope to be fixed in the future ""__LH_-_. HE
. : i _




E Example of Cluster ;
Merqging with PCA |
Working Across

TPC Volumes
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Towards
Pure 3D Paklerwn
Recoghition Techin E;q we.s




Toward 3D Patkern Rec

o Ulkimate goal is to have a purely 3D pattern
recognition approach to solving the problem

o The recently rekindled effort in this area has
focused on bracking with an idea to create a
purely 3D version of the Projection Matching
Algorithm

o Unciertving concept of “principal curves”
o This is facilitated by trying to adapt concepts
from Computational Geomelry:
o Principal Components Analysis
o Convex Hull = making use of defect points

o Efv&m&u.&uv hoping ko employ Voronoi diagrams

RO



Current Algorithm Flow

o S&QF 1: Skarkt with a sliced 3D cluster

o SEQP 2 Compuée the Convex Hull

o Computed in 2D bv projecting the 3D points into
the plane of maximum spread as defined bj the
Principal Components Analysis

o 2D for now to facilitate visualizakion, this should be
made 3D in the future

o With the hull, use the “defect” points to idem&i§3
candidate kinks in the trojectory

o Use the angle of the two edqges ko Ldem&ixfy kinldes

30



Simulated Muon IC%S\ o TR,
BT

Principal Components Axes S

3D Space Points displayed N
color coded by a measure
of their “goodness”;

S

U ——

o9
L

Artificial gap due to distorted
waveforms i 21!



Sinmulabed Muon in ICARUS

Project points to plane of
maximum spread by PCA,

Then aamyu&e the convex hull

Cownvex Hull
Eepresevx&ad b:} red
F’"’-:jﬂ"'“ enclosing cluster

Large yellow balls are
leinbe POEV\ES on the hull

Large (sort of) red balls
are “defect” points of the
convex hull

Ambiquous hikts mean kinks can
get rounded; kink points ulkimately

represent centers of interest and

will need further investigation




Now the Real Work Begins

o Now have a gross picture of our cluster

o Step 3 is to start breaking it into smaller pieces.

o Possible methods:
o Break ot kink points (if any)

o Break at defects points with large deviations from the primary
PCA

o Break at “large” gaps
o If Lots of hits simply break in half
o Employ a recursive algorithm:
o Brealk cluster b-j one of the above into two components
o Recompute PCA, convex hull and find kink points for each

o Rinse and repeat until “no further gain”

33
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PCA & Convex hull

of sub cluster \
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Resulting piecewise
linear trajectory
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| Drawing the individual primary principal components
axes of the subclusters in a connected fashion
Red curve: linked PCAs
Blue curve: the simulated particle Erajea&ary

i Note Ehalt ot Ehis Foim& we have made NO
assumptions about the ordering of the 2D Hits |
or 3D Space Points *



2D T@ckmiqu@.s

Skakus and Plans

o So far approach seems very promising for developing track
trajectories and finding the main kink points

o This only increases the To Do List:
o 2D convex hull to 3D, bebter kink resolution?

o More Pawerﬂfut computation geometry techniques?

o My favorite is Voronoi Diagrams
o Refinement of kinks - find actual vertices
o How will this work for shower reconstruction?
o The main problem?

o Time, particularly before Deep Learning overwhelms all of this...

3%



Exkra Stuff

(Not For The Feint of Heart)



Where Next?

o Two observakions

o When viewing the event displays it is intrigquing to
note the path defined bj the 3D hits with qood (small)
values of the mekbric

o Also note the density of hits along the particle path

o Is there a way to try to “follow” the path more
directly?

o Con use the end points of the convex hull as path
finding end points

o What might be useful for looking at the density and
Linking hitks toqgether to form a path?

4.0



Voronot Béagram i

o In a nubshell - given a set of “site points” 0
the voronoi diagram comnsists of the
collection of voronot cells, each cell is
bounded bj the set of points that are
equal distance from the interior site
point and each of its nearest neighbors

o Turns out ko be very fast to calculate - 1 log 1}
tn the site Fwim&s

o What is it good for?
o Fast Lookup of nearest neighbors
o Finding high density regions within a given collection of points
o Can guickly (linear time) get the convex hull
o Can quickly {:ompu?&@ the mininum spanining tree
o Cal use to do “nearest neighbor” averaging...

o Investiqate f a good starting point for a 3D patterin recognition
algorithm

41



Imﬂemamh&om i Clusker3d

o Can tompu&e the Voronoi Diagram in the
Cluster3?d code

o Unfortunately, the LArSoft event display has
defied all attempts to actually dispiaj tk!

o ‘Pr@.viousi.v had exptcwr@.d using the MST i
Cluster3d

o Followed path using a distance metric but did
not handle curvature with ambiquous hits well

o Using Voronoi Diagram, select nearest neighbor
with best metric.

42



