

UV Lasers System for Calibration in LAr TPCs

Yifan Chen University of Bern

Workshop on Calibration and Reconstruction for LArTPC Detectors December, 2018

LAr TPCs and nominal E-field

- Space Charge Effect
 - Argon ions drift ~10⁵ times
 slower than electrons
 - LAr convection moves the ions
 - Cosmic rays, radioactive sources and other constant high rate ionisation
- Detector Design

E-field affects:

- Spatial coordinates
- Drift velocity
- Charge recombination
- Charge diffusion
- Light Production

Acciarri, R., et al. "Design and construction of the MicroBooNE detector." Journal of instrumentation 12.02 (2017): P02017.

2

UV-Laser: Solution to E-field and more

A compact solution

to improve spatial resolution and energy response in LAr TPCs

- 1. Measure E-field
- 2. Measure drift velocity
- 3. Measure spatial distortion
- 4. Calibrate charge recombination

and light production

- 5. Measure electron lifetime
- 6. Examine readout response

UV Laser can produce reproducible straight beam with no delta rays with no Multiple Coulomb Scattering in LAr TPC

How does UV laser generate tracks in LAr?

Multiphoton ionisation: strong intensity dependence Resonance-enhanced multiphoton ionisation (2 + 1)266nm UV laser in 60mJ pulse have ~8E16 photons 15.764 eV Ionization state 3s²3p⁵(²P^o_{1/2})11s J=1 15.762 eV 3s²3p⁵(²P^o_{1/2}) 9d J=1 Ionization state ≈13.84 eV 3s²3p⁵(²P^o_{1/2})4s J=1 Excited states 11.83 eV forbidden 3s²3p⁵(²P^o_{1/2})4s J=0 3s²3p⁵(²P^o_{3/2})4s J=1 11.72 eV 11.62 eV forbidde 3s²3p⁵(²P°_{3/2})4s J=2 11.55 eV Excited states ≈9.80 eV ≈9.63 eV Virtual state ∧E=-1.92 eV LAr Scintillation Light 127 nm E_=4.67 eV E_= 9.76 eV Ground state Ground state 3s²3p⁶(¹S) J=0 Gas Argon Liquid Argon I Badhrees et al 2010 New J. Phys. 12 113024

Yifan Chen

University of Bern

Choice of Primary Laser

Continuum Surelite I-10

Beam Characters	
Wavelength	266 nm (dominate), 532 nm, 1064 nm
Repetition Rate	Up to 10Hz
Energy (266nm)	60 mJ (adjustable by attenuator and aperture)
Pulsewidth	4-6ns
Beam Diameter	5 mm (adjustable by aperture)
Beam Divergence	0.5 mrad

ARGONTUBE: reproducible, long Laser Tracks

Yifan Chen

University of Bern

Signal [mV]

20

-20

ARGONTUBE: Electron Lifetime Measurement

A Ereditato et al 2013 JINST 8 P07002

Yifan Chen

MicroBooNE: UV Laser Setup in a comprehensive LAr TPC

MicroBooNE: Steerable Laser System with Feedthrough

Cold mirror can rotate vertically (linear) and horizontally (rotary). Mirror position is read by two encoders. Evacuated quartz tube guides UV laser entering LAr.

Supporting Structure

MicroBooNE: Laser Scan and the Coverage

- ~ 80% of TPC active area is covered by either laser (with interpolation)
- ~ 60% of TPC active area is covered by both lasers (with interpolation)

MicroBooNE: Laser Tracks_

Reconstructed laser tracks

are bent if E-field is non-uniform. are shifted if nominal E-field is off.

University of Bern

True laser tracks are straight lines.

Yifan Chen

MicroBooNE: Determine Positions of True Laser Tracks

To determine a true laser track, an angle and a point are enough.

Laser beam angle from cold mirror angle

- The angle of cold mirror is measured by linear encoder and rotary encoder on the top of feedthrough
- σ (vertical/horizontal) = 0.05 mrad σ (encoder) = 0.5 mm @ 10 m
- Laser beam angle can be converted from cold mirror angle

Reflection point on cold mirror

True laser tracks only depend on mechanical information (independent of TPC readout) 2 mm position accuracy is achieved at 10 m from cold mirror

MicroBooNE: Calibration Flow

Concepts of D Map

The displacement map (D map) shows the offsets of spatial coordinates in TPC range due to E-field variations.

Dictionary:

True spatial coordinates:

- Represent actual position of ionisation
- Regular TPC boundary

Reconstructed spatial coordinates:

- Ionised electrons drifted by a different E-field but reconstructed by a nominal E-field
- Potentially irregular TPC boundary

Distortion Map (True -> Reconstructed):

- Regular grid in true spatial coordinates
- Used for simulation

Correction Map (Reconstructed -> True):

- Regular grid in the reconstructed spatial coordinates
- Used for spatial calibration and E-field calculation

MicroBooNE: Calculation of D Map

- **1.** Reconstruction: laserhit + Pandora
- 2. Track Iteration: map the reconstructed tracks to true tracks
- 3. Boundary Condition: no spatial distortion at the anode
- 4. Interpolation the spatial distortion to form regular grid

MicroBooNE: Track Iteration

Yifan Chen

University of Bern

MicroBooNE: Calculation of Drift Velocity and E-field

$$|\overrightarrow{v_n}| = \frac{|\overrightarrow{R_n}|}{\Delta x} |\overrightarrow{v_0}|$$
$$|\overrightarrow{v_0}| = 1.114 mm/\mu s$$

$$|\vec{v_n}|(|\vec{E}|,T) \rightarrow |\vec{E}|(|\vec{v_n}|)$$

Drift velocity as a fit function of E field and Temperature

MicroBooNE: Lesson and Homework 1

Long laser track:

• Over 10 m

Do we need better laser?

- Minimise the number of dichroic mirrors
- More powerful and stable laser?

Laser Alignment:

• Easy accessible environment

Laser coverage:

- Put the cold mirror in TPC active volume (at corner)
- Test WLS efficiency change in LAr with UV laser running
- Test reflection efficiency of dichroic coating with different incident angles
- Optimise the placement of light detection system and UV laser

True laser position calibration:

- Anode is the best calibration source with respect to TPC position
- Otherwise using photoelectrons on at least one item with well know position

MicroBooNE: Lesson and Homework 2

Crossing track:

Move from track-track correction to point-point correction

Laser Scan Pattern:

- How to increase number of crossing tracks?
- Lower the TPC running time without light detection

Laser Pulse Rate:

• No more than 4 Hz

Regular Calibration Run:

• How often?

TPC Geometry Survey:

Necessary

SBND: Design of Laser Setup

- Plots by Roger Hänni
- 4 laser heads are delivered to Fermilab
 1 laser head is used for tests in Bern
- Full coverage allows plenty crossing tracks
- Incident angle on dichroic mirror 0 45°

DUNE: Plan of Laser Calibration System

- UV laser system design based on MicroBooNE and SBND laser
- Cryostat design with calibration ports
- Calibration Consortium is formed and it supports laser calibration system design in view of the Technical Design Report

University of Bern