A Proposal to Inherit Configuration
from Provenance

Alex Himmel

LArSoft Coordination Meeting
October 9th 2018

https://cdcvs.fnal.gov/redmine/issues/20772

The Problem

* Aproblem I frequently run into in the photon simulation
+ reconstruction in DUNE is that services must be
configured in consistent ways across different ART jobs.

— Keeping consistent geometries at generation, reconstruction,
and analysis.

— Remembering pre-scale values used during G4 so they can be
removed at the detsim stage.

— Using the same photon library that was used during G4 to
reconstruct energy.

* [have an existing work-around for the second example.

— A script which can be run in advance to compare provenance
to the fthicl being run.

— But a user must know to run it for it to work!

A (Seemingly) Simple Solution

* But - all of the information to avoid these problems is available right
in the ART file in the provenance already!

My proposal is to extend the fhicl syntax to direct ART to pull
configuration from a file’s own provenance rather than the prolog.

* For example:

services: {
LArPropertiesService: @file::g4.LArPropertiesService

}

services.LArPropertiesServices.ScintYield: 24500

— would tell ART to configure LArPropertiesService the same way it was
during the g4 stage of processing, but then override the ScintYield as
usual.

— Could imagine also defaulting to the last process if it is not specified.

* Obviously not 100% foolproof backwards compatibility

— Breaks if parameters are added or removed, or their meaning changes,

but we can plan around those things when developing services. :

Not so Simple

[discussed this plan with the Artists, which lead to a fun discussion and
some insights.

First, the plan I laid out has a fatal flaw:

— As written, ART must be fully configured before the first file is opened since
services can be used in the Source module.

There is a potential short term solution: a wrapper script

— We have a wrapper script which first fully expands the fhicl, looking for
instances of calls to provenance.

— If found, this wrapper runs config_ dumper on the first input file and inserts the
necessary segments into a the fhicl which is actually passed to the ART job.

— In principle, we can name this wrapper “lar” and make it totally transparent to
users.

The ask - any volunteers to have a discussion of details of requirements for
such a script with relevant experts from the LArSoft world.

— I spend a lot of time worrying about getting correct results from people who
are brand new to LArSoft.

— Core developers and production experts likely have different needs and
perspectives.

In the Long Run

* An important caveat: services which need this
functionality likely shouldn’t be services at all.

* The “right” model for how to handle information like this,
as I understand it, is to have a producer insert it into the
event record and have all processes access it from there.

— The actual interface would be “overlay classes” which would
act as a go-between for the data product and the developer.

* This, obviously, is a MAJOR undertaking

— It involves serious rethinking of how many core LArSoft
elements work.

— But, I am told much of this work is necessary regardless to
enable full use of multi-threading.

