
Upgrading LArSoft to art 3
Kyle J. Knoepfel
10 October 2018
LArSoft Coordination Meeting

Upgrading LArSoft to art 3

2

• Moving LArSoft to support multi-threading is a significant effort that is underway
– Serial event-processing is art’s default behavior—getting here is the first step.
– You must opt-in to multi-threaded execution.

• There is guidance for how to do this:
– https://cdcvs.fnal.gov/redmine/projects/art/wiki/Upgrading_to_art_3

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting

Upgrading LArSoft to art 3

3

• Moving LArSoft to support multi-threading is a significant effort that is underway
– Serial event-processing is art’s default behavior—getting here is the first step.
– You must opt-in to multi-threaded execution.

• There is guidance for how to do this:
– https://cdcvs.fnal.gov/redmine/projects/art/wiki/Upgrading_to_art_3

• Lynn and I have been upgrading the LArSoft repositories to support art 3.
– Exposed some breaking changes I was not aware of

• I am in the process of updating the art breaking-changes page
– Exposed suboptimal practices (e.g.):

• Lot of calls to RandomNumberGenerator::getEngine(…), which will be deprecated in art
3.02 and removed in art 3.03.

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting

• They are the most poorly defined constructs within art.
• They are popular for their global state and easy configurability, but they cause

myriad problems for multi-threading.
• If you would like to implement a typical algorithm, it is not necessary to create a

service (provider).
– An algorithm takes any number of inputs, and returns an output.

Services are problematic

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting4

• They are the most poorly defined constructs within art.
• They are popular for their global state and easy configurability, but they cause

myriad problems for multi-threading.
• If you would like to implement a typical algorithm, it is not necessary to create a

service (provider).
– An algorithm takes any number of inputs, and returns an output.

• Stumbled across this:

Services are problematic

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting5

void MyProducer::produce(art::Event& e)
{
art::ServiceHandle<MyService> ms;

 ms->preProcessEvent(e); // Callback registered with art
 ...
}

• They are the most poorly defined constructs within art.
• They are popular for their global state and easy configurability, but they cause

myriad problems for multi-threading.
• If you would like to implement a typical algorithm, it is not necessary to create a

service (provider).
– An algorithm takes any number of inputs, and returns an output.

• Stumbled across this:

Services are problematic

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting6

void MyProducer::produce(art::Event& e)
{
art::ServiceHandle<MyService> ms;

 ms->preProcessEvent(e); // Callback registered with art
 ...
}

Service callbacks are to be
called by the framework only.
Hands off! J

• They are the most poorly defined constructs within art.
• They are popular for their global state and easy configurability, but they cause

myriad problems for multi-threading.
• If you would like to implement a typical algorithm, it is not necessary to create a

service (provider).
– An algorithm takes any number of inputs, and returns an output.

• Stumbled across this:

Services are problematic

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting7

void MyProducer::produce(art::Event& e)
{
art::ServiceHandle<MyService> ms;

 ms->preProcessEvent(e); // Callback registered with art
 ...
}

Service callbacks are to be
called by the framework only.
Hands off! J

Make all registered callbacks
private members of the service.

• NuRandomService is widely used in the LArSoft repositories. Its createEngine
provides a layer on top of art’s createEngine interface.
– The only way to interact with the random-number engine is to call
RandomNumberGenerator::getEngine

– Such a call is expensive, exposes multi-threading details to the user, and is unnecessary.
– In art 3.02 it will be deprecated; in art 3.03 it will be removed.

• Like art’s createEngine interface, NuRandomService::createEngine will
return a reference to the art-managed engine.

• No code breaks in LArSoft; not sure about experiment repositories.

NuRandomService interface change

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting8

- long seed = ServiceHandle<NuRandomService>{}->createEngine(...);
+ CLHEP::HepRandomEngine& engine = ServiceHandle<NuRandomService>{}->createEngine(...);

NuRandomService interface change

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting9

class MyProducer {
public:

MyProducer(ParameterSet const& pset)
 {

ServiceHandle<NuRandomService>{}
->createEngine(...);

 }

void produce(art::Event& e) override
 {

auto& engine =
ServiceHandle<RandomNumberGenerator>{}

->getEngine(...);
CLHEP::RandFlat flatDist{engine};

 flatDist.fire(...);
 }
};

Before

NuRandomService interface change

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting10

class MyProducer {
public:

MyProducer(ParameterSet const& pset)
 {

ServiceHandle<NuRandomService>{}
->createEngine(...);

 }

void produce(art::Event& e) override
 {

auto& engine =
ServiceHandle<RandomNumberGenerator>{}

->getEngine(...);
CLHEP::RandFlat flatDist{engine};

 flatDist.fire(...);
 }
};

Before

Expensive operations:
ServiceHandle created for each event
getEngine called on each event
RandFlat distribution created for each event

NuRandomService interface change

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting11

class MyProducer {
public:

MyProducer(ParameterSet const& pset)
 {

ServiceHandle<NuRandomService>{}
->createEngine(...);

 }

void produce(art::Event& e) override
 {

auto& engine =
ServiceHandle<RandomNumberGenerator>{}

->getEngine(...);
CLHEP::RandFlat flatDist{engine};

 flatDist.fire(...);
 }
};

class MyProducer {
CLHEP::RandFlat flatDist_;

public:

MyProducer(ParameterSet const& pset)
: flatDist_{ServiceHandle<NuRandomService>{}

->createEngine(...)}
 {}

void produce(art::Event& e) override
 {
 flatDist_.fire(...);
 }
};

Before After

NuRandomService interface change

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting12

class MyProducer {
public:

MyProducer(ParameterSet const& pset)
 {

ServiceHandle<NuRandomService>{}
->createEngine(...);

 }

void produce(art::Event& e) override
 {

auto& engine =
ServiceHandle<RandomNumberGenerator>{}

->getEngine(...);
CLHEP::RandFlat flatDist{engine};

 flatDist.fire(...);
 }
};

class MyProducer {
CLHEP::RandFlat flatDist_;

public:

MyProducer(ParameterSet const& pset)
: flatDist_{ServiceHandle<NuRandomService>{}

->createEngine(...)}
 {}

void produce(art::Event& e) override
 {
 flatDist_.fire(...);
 }
};

Before After

createEngine returns art-owned reference
to engine; no need to directly interact with it

NuRandomService interface change

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting13

class MyProducer {
public:

MyProducer(ParameterSet const& pset)
 {

ServiceHandle<NuRandomService>{}
->createEngine(...);

 }

void produce(art::Event& e) override
 {

auto& engine =
ServiceHandle<RandomNumberGenerator>{}

->getEngine(...);
CLHEP::RandFlat flatDist{engine};

 flatDist.fire(...);
 }
};

class MyProducer {
CLHEP::RandFlat flatDist_;

public:

MyProducer(ParameterSet const& pset)
: flatDist_{ServiceHandle<NuRandomService>{}

->createEngine(...)}
 {}

void produce(art::Event& e) override
 {
 flatDist_.fire(...);
 }
};

Before After

createEngine returns art-owned reference
to engine; no need to directly interact with it

Feature branch to be added soon.

• I’ve seen many instances of:

// MyProducer_module.cc
#ifndef MyProducer_module_h
#define MyProducer_module_h
…
#endif

• An implementation file (“.cc” file) should never be included in another file—i.e. there
should never be a need for a header guard.

• Please do not put them in files that are not intended to be included.

Header guards are for headers

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting14

• Consider this code:

To reconfigure or not to reconfigure…

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting15

class MyProducer {
LargeObject obj_;

public:

MyProducer(ParameterSet const& pset)
 {

reconfigure(pset);
 }

void reconfigure(ParameterSet const& p)
 {

obj_ = LargeObject{p.get<std::string>("some_label")};
 }
};

• Consider this code:

To reconfigure or not to reconfigure…

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting16

class MyProducer {
LargeObject obj_;

public:

MyProducer(ParameterSet const& pset)
 {

reconfigure(pset);
 }

void reconfigure(ParameterSet const& p)
 {

obj_ = LargeObject{p.get<std::string>("some_label")};
 }
};

LargeObject() called before
reconfigure is called

• Consider this code:

To reconfigure or not to reconfigure…

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting17

class MyProducer {
LargeObject obj_;

public:

MyProducer(ParameterSet const& pset)
 {

reconfigure(pset);
 }

void reconfigure(ParameterSet const& p)
 {

obj_ = LargeObject{p.get<std::string>("some_label")};
 }
};

LargeObject() called before
reconfigure is called

LargeObject(string const&)
called

• Consider this code:

To reconfigure or not to reconfigure…

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting18

class MyProducer {
LargeObject obj_;

public:

MyProducer(ParameterSet const& pset)
 {

reconfigure(pset);
 }

void reconfigure(ParameterSet const& p)
 {

obj_ = LargeObject{p.get<std::string>("some_label")};
 }
};

LargeObject() called before
reconfigure is called

LargeObject(string const&)
called

To boot: module reconfiguration is not supported by art

• Consider this code:

To reconfigure or not to reconfigure…

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting19

class MyProducer {
LargeObject obj_;

public:

MyProducer(ParameterSet const& pset)
: obj_{p.get<std::string>("some_label")}

 {}
};

LargeObject(string const&)
called

• Consider this code:

To reconfigure or not to reconfigure…

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting20

class MyProducer {
LargeObject obj_;

public:

MyProducer(ParameterSet const& pset)
: obj_{p.get<std::string>("some_label")}

 {}
};

LargeObject(string const&)
called

Please do not add reconfigure functions to your modules.

• Think about what you are coding—every character counts.
– Do you know why your function is private or public?
– Do you know why you’re creating a class/service instead of a function?

• You should be able to ask yourself such questions, and anybody else. Ask me!

• Over the next year, members of the SciSoft team will be working on LArSoft code,
preparing it for multi-threading.
– Getting there will take time, and it will be gradual.
– We intend to polish code as we go.
– This is also a time for the art project to determine how to better support users.

Takeaways

10/8/18 Kyle J. Knoepfel | LArSoft coordination meeting21

Thanks for your time.

