

Anode-Piercing / Cathode-Crossing Samples for SCE Calibration

Hannah Rogers - *Wednesday, October 10, 2018* ProtoDUNE Simulation / Reconstruction Meeting

Anode-Piercing Tracks

- Anode-piercing tracks assumed to be through going (must pass through only one of top, bottom, front, or back of the detector; other end passes through anode or cathode)
- Cathode-crossing tracks removed by drift direction
- $T_{measured} = T_{anode} + t_0$ and $T_{anode} = 0 \ \mu s$
- Calculated t₀ matched to flash time from PMTs
- All times measured with respect to trigger time
- Technique adapted from MicroBooNE public note: MICROBOONE-NOTE-1028-PUB

Non-SCE Simulated Anode-Piercing Sample

Non-SCE Simulated Anode-Piercing Sample Purity

	Full distribution	dt _{flash} < 1.0 μs
Total tracks	15149	15149
Anode tracks	1023	586
"Pure" tracks	679	572
Purity	66.4%	97.6%
Selected Track Fraction	6.75%	3.87%

- "Pure" is defined as |dt_{MC}| < 10.0 μs
- Calculated for 100 events

SCE Simulated Anode-Piercing Sample

SCE Simulated Anode-Piercing Sample Purity

MC truth t_o - Reconstructed t_o

Calculated for 100 events

Anode-Piercing/Cathode-Crossing Coverage

- Cathode-crossing tracks cover the middle of the detector well
 - ~ 9 cathode-crossing tracks per event
- Anode-piercing tracks cover the edges better
 - Roughly 6 good anode-piercing tracks per event

MC Coverage with SCE - Top

Anode-Piercing Tracks

Cathode-Crossing Tracks

MC Coverage with SCE - Bottom

Anode-Piercing Tracks

Cathode-Crossing Tracks

MC Coverage with SCE - Front (low Z)

Anode-Piercing Tracks

Cathode-Crossing Tracks

MC Coverage with SCE - Back (high Z)

Anode-Piercing Tracks

Cathode-Crossing Tracks

MC Coverage with SCE - Positive Cathode

Anode-Piercing Tracks

Cathode-Crossing Tracks

Combined

Negative / Positive cathode coverage maps very similar: Make sense based on cathode-crossing technique

MC Coverage with SCE - Negative Cathode

Anode-Piercing Tracks

Cathode-Crossing Tracks

Combined

Negative / Positive cathode coverage maps very similar: Make sense based on cathode-crossing technique

MC SCE Spatial Offsets - Top

From t₀-tagged tracks:

 $Y_{true} - Y_{reco}$ [cm]: Y = 5.80 m

MC SCE Spatial Offsets - Bottom

From t₀-tagged tracks:

 Y_{true} - Y_{reco} [cm]: Y = 0.20 m

MC SCE Spatial Offsets - Front (low Z)

From t_o-tagged tracks:

From simulation map:

 $Z_{true} - Z_{reco}$ [cm]: Z = 0.20 m

MC SCE Spatial Offsets - Back (high Z)

From t_o-tagged tracks:

From simulation map:

 $Z_{true} - Z_{reco}$ [cm]: Z = 7.00 m

17

MC SCE Spatial Offsets - Positive Cathode

• Does cathode-stitching in pandora force the offset to be zero?

• If matching can make straightest track instead of moving tracks to zero, SCE offsets could be possible.

MC SCE Spatial Offsets - Negative Cathode

From t_o-tagged tracks:

From simulation map:

- Does cathode-stitching in pandora force the offset to be zero?
- If matching can make straightest track instead of moving tracks to zero, SCE offsets could be possible.

Next steps for MC

- Understand spatial offsets at cathode
- Calculate bulk spatial offsets
- Use fluid flow maps in simulation

What's needed to repeat study with data:

- To get anode-piercing tracks: Need flash data
- To get cathode-crossing tracks: Need purity high-enough to see near cathode
 - Some data does exist (Run 5007), but it has not been run through the reconstruction chain yet
 - When I attempted to run through reco myself, it resulted in a segmentation fault.