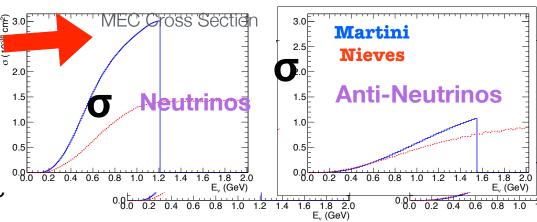
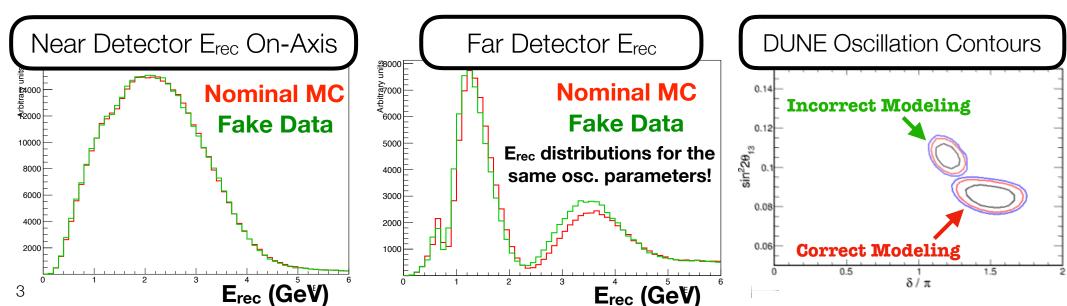

DUNE-PRISM Experimentally Constraining E_{true} → E_{rec}

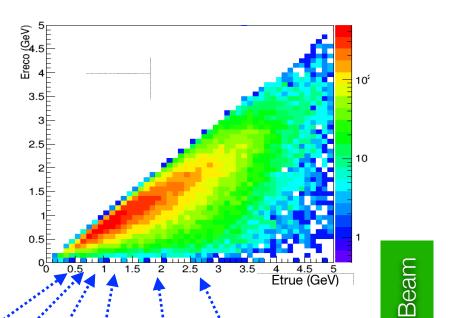
Mike Wilking Stony Brook University LBNC Meeting October 15th, 2018


The E_v Measurement Problem

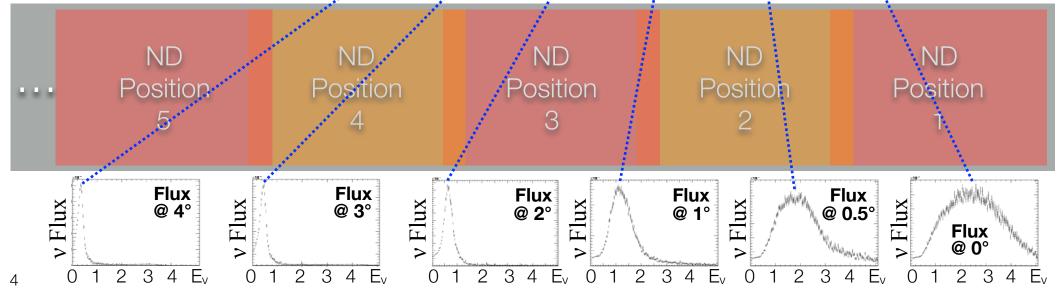
- Typically, E_{v} is "measured" via the observed final state
 - However, the final state is subject to missing energ (e.g. neutrons) & nuclear physics (e.g. MEC, FSI, offshell effects, ...)
 - This causes smearing of E_{rec} relative to E_{true} (typically feed-down)
- E_{rec} → E_{true} translation depends on poorly understood neutrino interaction models
 - 1p1h, 2p2h, npnh, RPA, pion production, FSI, transition, DIS, etc.
- Within DUNE, the near detector (ND) will be used tc experimentally constrain E_{rec} → E_{true} using off-axis measurements



(True deposited hadronic energy)/ (True initial hadronic energy)


Mismodeling Etrue -> Erec Can Produce Biases

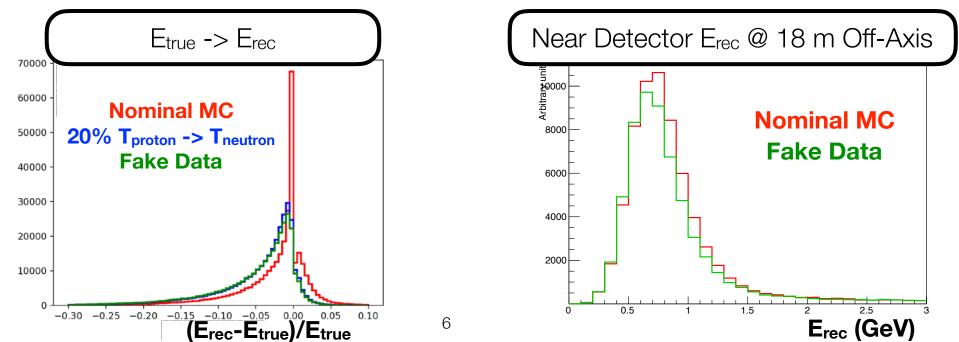
- In every long-baseline v experiment:
 - 1. Event rate distributions are measured in the near detector
 - 2. The <u>v flux</u> and <u>v cross section modeling</u> are tuned to make the ND MC match ND data distributions
- <u>The problem</u>: there are many degenerate cross section model adjustments that can make (on-axis) ND MC match ND data (even if the flux prediction is perfect)
 - The wrong model can have a substantial impact at the far detector, even if it provides agreement in ~all on-axis near detector observables
 - i.e. DUNE may report incorrect oscillation parameters without any evidence of a problem if we use only on-axis ND measurements



DUNE-PRISM Technique

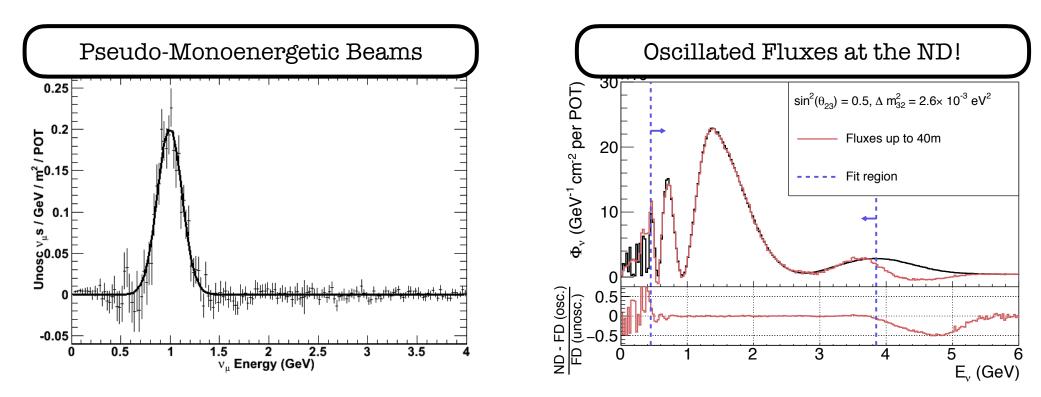
- By moving the near detector off-axis, we can measure increasingly lower E_v spectra
 - This allows us to experimentally constrain Erec vs Etrue
- The ND MC must match the ND data for a variety of different energy spectra, which breaks potential cross section model degeneracies

Increasing Off-axis angle



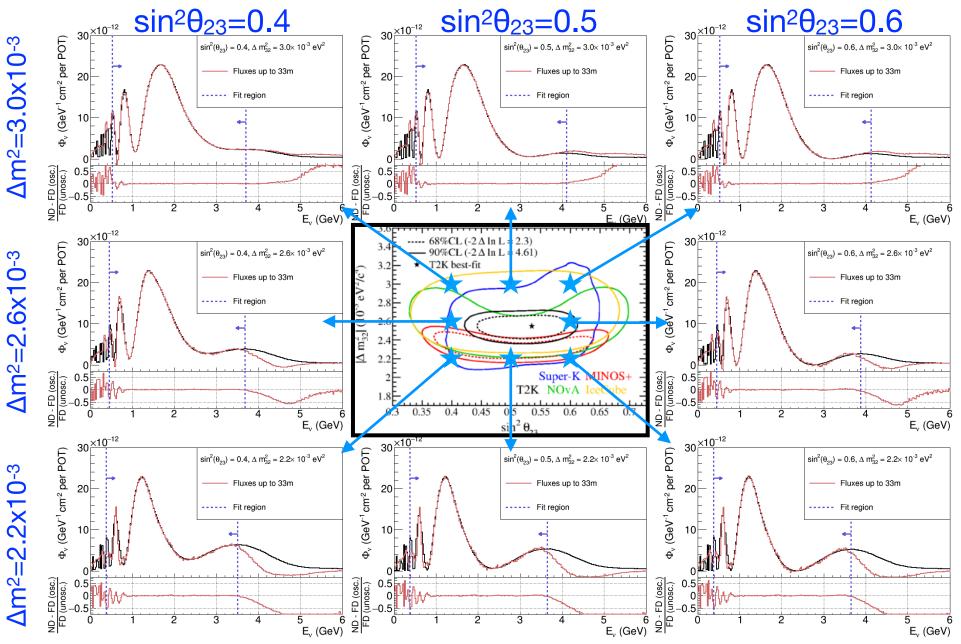
Using DUNE-PRISM Information

- Near detector measurements with a continuously varying energy spectra can be used to constrain cross section modeling and E_{true} → E_{rec} mapping in two distinct ways:
- 1. Off-axis measurements will likely identify incorrect cross section models that nonetheless produce data/MC agreement on-axis (due to degenerate model effects)
 - This information will allow for iterative model improvements with theorists and model builders
- 2. Measurements of the continuously varying E_v peak position in each off-axis slice can be combined to produce a data-driven far detector prediction that naturally incorporates unknown cross section effects
 - (more on this in 2 slides)


Identifying Poor Cross Section Modeling

- The previously shown fake data were produced by:
 - Transferring 20% of proton kinetic, Tp, energy to (unseen) neutrons
 - Adjusting other parts of the cross section model (do/dT_p, pion production, angular distributions, etc.) to achieve nearly perfect agreement in ~all ND observables
 - In every LBL experiment, cross section models are adjusted to make ND data match ND MC
 - Wrong choices for how to "fix" the ND data/MC agreement can result in an incorrect E_{true} -> E_{rec} relationship (and, hence, the wrong answer for δ_{CP})
- By making off-axis measurements, cross section modeling problems can be clearly identified

Creating New Ev Spectra


• By taking linear combinations of measurements at different off-axis positions, we can determine observable distributions for a wide variety of energy spectra

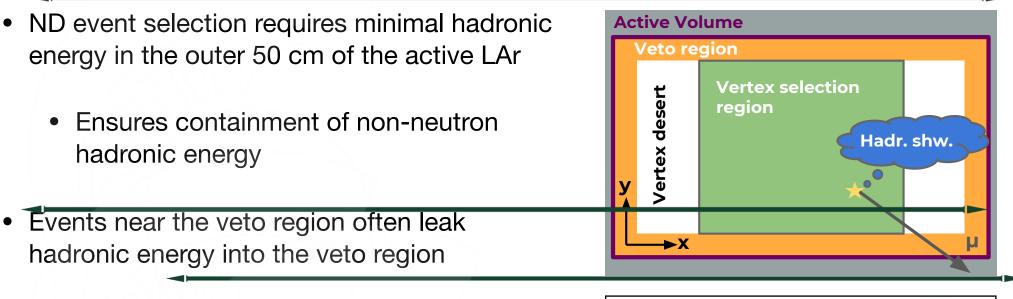
- Gaussian fluxes allow us to directly measure Erec for a given Etrue
- Oscillated fluxes allow us to directly measure oscillated far detector observables at the near detector

Oscillated Flux Fits

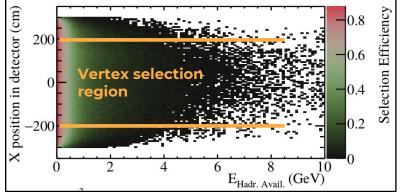
 DUNE-PRISM can match the far detector oscillated spectra for all currently allowed values of oscillation parameters

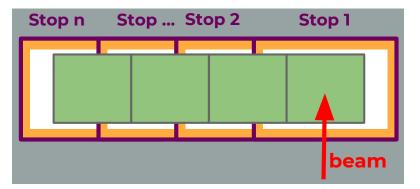
8

DUNE-PRISM Next Steps


- Detailed studies of off-axis information have been ongoing for that past 1+ years (e.g. fake data studies), but activity is increasing due to the DUNE Technical Design Report timescales
- Several topics are under active investigation:
 - Precise treatment of correlated flux uncertainties across all off-axis and E_{ν} bins
 - Minimizing the differential model dependence in the ND efficiency correction across off-axis angle
 - Detailed study of energy resolution differences between the ND and FD
 - Implementation of a data-driven far detector prediction in CAFAna for a complete end-to-end DUNE-PRISM analysis

TDR Plans


- Baseline plan
 - Fake data samples, such as the sample shown in this talk, can be used to set uncertainties on oscillation measurements
 - It can then be demonstrated that DUNE-PRISM disallows such variations and improves oscillation parameter sensitivities
 - Basic demonstration of DUNE-PRISM technique, including far detector E_{rec} predictions that are free from cross section modeling bias
- Stretch goals
 - Fitting on- & off-axis samples together in a "standard" near/far fit framework
 - Oscillation parameter sensitivities using far detector predictions produced by near detector linear combinations

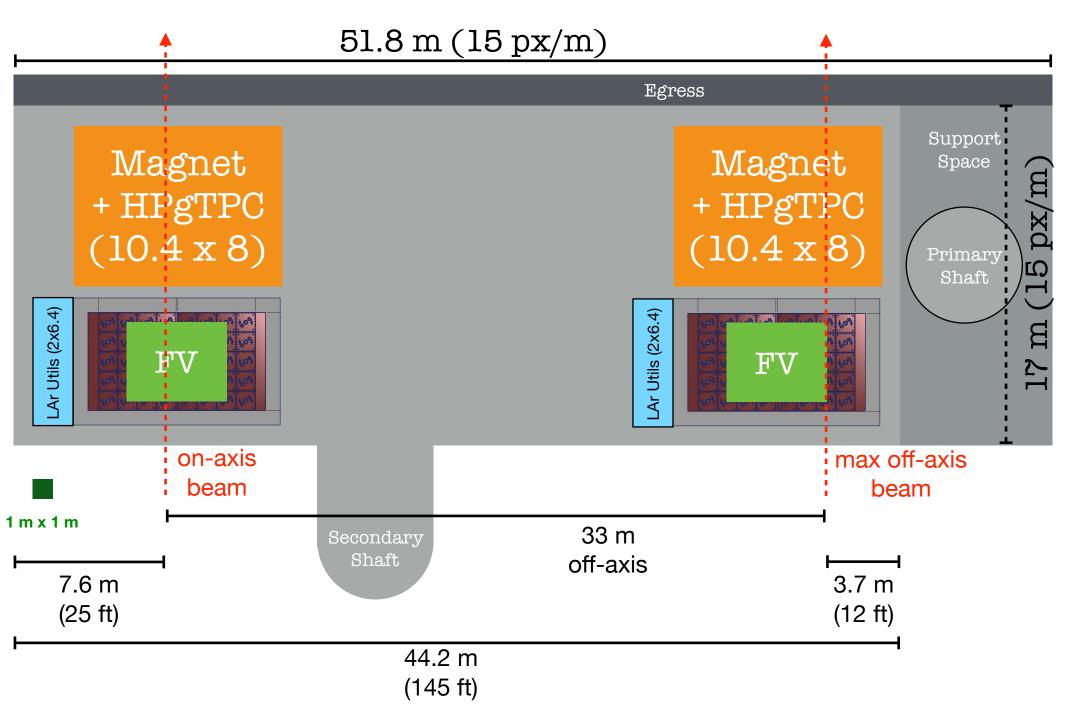

Supplement

Off-Axis Efficiency

- This produces a model-dependent efficiency drop
- To minimize model-dependent efficiency differences between off-axis slices, the fiducial volume is separated from the veto region by 1.5 m
- With the currently assumed 7-m-wide LAr detector, 8 off-axis positions are required for continuous coverage up to 32 m off-axis

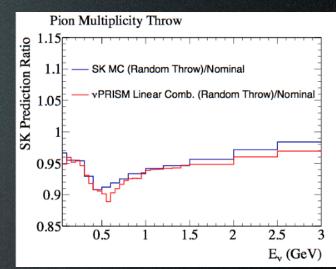
Off-Axis Event Rates

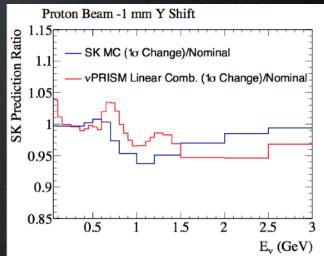
- The DUNE-PRISM run plan has not yet been optimized, but current working assumption is 50% on-axis, 50% off-axis running
 - Still allows for low statistics on-axis measurements, such as v-e scattering
- Even with a few percent of the total run time, several thousand events are expected at each off-axis position

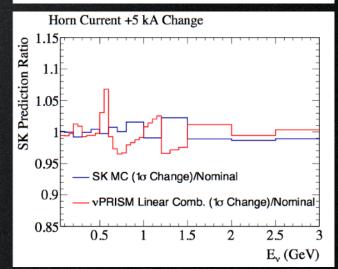

FHC (1 year of running)

	10^{19} POT	CCInc							NCInc
Offset		μ contained			$\mu \text{ exit}, T_{\mu}^{\text{exit}} > 50 \text{MeV}$			1/-	1/
		ν_{μ}	$\epsilon_{\nu_{\mu},CC}$	$\bar{ u}_{\mu}/ u_{\mu}$	ν_{μ}	$\epsilon_{\nu_{\mu},CC}$	$\bar{ u}_{\mu}/ u_{\mu}$	$\nu_{\rm e}$	ν_{μ}
0 m	55	6.6E5	3%	1%	5.5 E 6	22%	3%	4.9E4	1.8E6
$3 \mathrm{m}$	4.58	5.5E4	3%	1%	4.2E5	22%	3%	4.0E3	1.4E5
$6 \mathrm{m}$	4.58	5.8E4	4%	1%	3.1 E5	22%	4%	3.5E3	1.1E5
$9 \mathrm{m}$	4.58	6.0E4	7%	1%	2.0 E5	23%	4%	2.8E3	7.5E4
$12 \mathrm{m}$	4.58	5.9E4	12%	1%	1.2E5	24%	5%	2.1E3	5.2E4
15 m	4.58	5.4E4	18%	1%	$6.9 \mathrm{E4}$	22%	6%	1.8E3	3.7E4
$18 \mathrm{~m}$	4.58	4.6E4	22%	1%	4.3E4	21%	7%	1.4E3	2.7 E4
$21 \mathrm{m}$	4.58	3.9E4	27%	1%	2.8E4	19%	8%	1.2E3	2.1E4
$24 \mathrm{m}$	4.58	3.2E4	30%	2%	1.9E4	18%	9%	9.3E2	1.6E4
$27 \mathrm{m}$	4.58	2.6E4	32%	2%	1.4 E4	17%	9%	7.9E2	1.3E4
30 m	4.58	2.1 E4	33%	2%	$1.1 \mathrm{E4}$	17%	11%	6.8E2	1.0E4
$33 \mathrm{m}$	4.58	1.7 E4	35%	2%	8.11E3	17%	13%	6.4E2	8.3E3
$36 \mathrm{m}$	4.58	1.3E4	35%	2%	6.62E3	17%	14%	5.7E2	6.6E3
	Fotals	ν_{μ}		$\bar{\nu}_{\mu}$	$ u_{\mu} $		$\bar{\nu}_{\mu}$	$\nu_{\rm e}$	ν_{μ}
All	110	1.1E6		1.6E4	6.7E6		2.2E5	6.9E4	2.3E6

RHC (1 year of running)


	10^{19} POT	CCInc							NCInc
Offset		$\bar{\mu}$ contained			$\bar{\mu} \text{ exit}, T_{\bar{\mu}}^{\text{exit}} > 50 \text{MeV}$			ī.	ī
		$\bar{\nu}_{\mu}$	$\epsilon_{\bar{\nu}_{\mu}, CC}$	$ u_{\mu}/\bar{ u}_{\mu}$	$\bar{ u}_{\mu}$	$\epsilon_{\bar{\nu}_{\mu},CC}$	$ u_{\mu}/\bar{ u}_{\mu} $	$\bar{\nu}_{ m e}$	$\bar{ u}_{\mu}$
0 m	55	1.1E5	1%	50%	2.0E6	25%	23%	1.6E4	1.1E6
3 m	4.58	9.1E3	2%	47%	1.5E5	25%	25%	1.2E3	8.0E4
6 m	4.58	9.8E3	2%	45%	1.1E5	25%	30%	1.0E3	6.1 E4
$9 \mathrm{m}$	4.58	1.02E4	4%	41%	6.3E4	26%	37%	7.8E2	3.9E4
$12 \mathrm{m}$	4.58	1.0E4	8%	41%	3.4E4	26%	49%	5.7E2	2.5E4
$15 \mathrm{m}$	4.58	8.7E3	12%	42%	1.9E4	25%	63%	4.6E2	1.6E4
$18 \mathrm{~m}$	4.58	7.9E3	17%	42%	1.1E4	23%	86%	3.3E2	1.2E4
$21 \mathrm{m}$	4.58	6.4E3	20%	48%	7.0E3	22%	100%	3.0E2	8.5 E3
$24 \mathrm{m}$	4.58	5.2E3	22%	52%	4.6E3	20%	120%	2.2E2	6.7E3
$27 \mathrm{m}$	4.58	4.4E3	25%	58%	3.5E3	20%	140%	1.8E2	5.2E3
30 m	4.58	3.4E3	26%	71%	2.6E3	20%	150%	1.5E2	3.9E3
$33 \mathrm{m}$	4.58	2.7E3	27%	75%	2.0E3	20%	170%	1.5E2	3.4E3
$36 \mathrm{m}$	4.58	2.2E3	28%	78%	1.4E3	18%	210%	96	2.8E3
Т	otals	$\bar{\nu}_{\mu}$		ν_{μ}	$\bar{\nu}_{\mu}$		ν_{μ}	$\bar{\nu}_{\mathrm{e}}$	$\bar{\nu}_{\mu}$
All	110	1.9E5		9.3E4	2.34E6		6.13E5	2.1E4	1.3E6


ND Hall Layout



Flux Uncertainties

- Haven't we just replaced **unknown cross section** errors with **unknown flux errors**?
 - Yes! But only relative flux errors are important!
 - Significant cancelation between PRISM and far detector variations
- **Normalization uncertainties will cancel** in the PRISM analysis
 - Cancelations persist, even for the PRISM linear combination
- Variations that affect off-axis angle shape are most important
 - Horn current, beam direction, alignment, etc.
- First analyses indicate that flux variations do not significantly impact PRISM analyses

