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The CMS L1 Trigger System

● Receives data from Calorimeter and Muon Detectors  at a rate of 40 
MHz and outputs data at 100 kHz

● Creates physics objects in HW (electron/photons, muons, jets, Missing 
energy) Decision taken only at the Global Trigger  
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Introduction
● Muon Trigger: Workhorse of the CMS Physics program

● 75% of CMS publications rely in  muon triggers to get the data on tape
– Four out of the “big five”  flagship Higgs analyses 

● Muon Trigger Requirements for the HL-LHC upgrade
● Trigger muons from electroweak processes with an efficiency> 95% 
● Enable displaced  muon triggers to gain access to new physics models

Barrel Region

● UCLA Focus:  
● Barrel Muon Trigger Track 

finding for HL-LHC
● Already involved in current 

Barrel Muon Trigger with the 
European groups
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Current  Barrel  Muon Track Finder

● Consists of 12 processors featuring  a Virtex 7 690T FPGA
● Each processor receives data from 5 wheels in  x 3 sectors in θ x 3 sectors in φ φ

● Left and right sectors shared in each processor to account for boundaries
● Each processor forwards 3 muons to the Global Muon Trigger (GMT)

● GMT cleans overlap between sectors and track finders and forwards data to the 
Global trigger where decision is made
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Tracking in the CMS barrel muon system

φ

φ
b

● Four stations: each hit with position ( ) and bending angle(φ φb)
● 22 bits per station (maximum 88 bits per track)

● Current track finder assigns momentum using the  between two Δφ
stations + assuming the track comes from the center of the detector

● Beamspot  constraint  improves resolution
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Beamspot constraint and displaced muons

● While the beamspot constraint improves resolution for prompt muons, 
it is sub-optimal for displaced particles

● Momentum mis-measurement results in trigger inefficiency
● Displaced particle models very popular lately  Need displaced triggers → Need displaced triggers 

decay

real track extension

vertex constrained 
track extension

0-1cm

1-10cm

10-30cm
30-100cm
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A Kalman Filter for BMTF

Initialize

Propagate
Update

Propagate

Update

Propagate

Update

Propagate

Update

Vertex Unconstrained
Measurement

Vertex Constrained
Measurement

● Sequential algorithm: (mathematically equivalent to a χ2 fit)
● Propagate track inwards from station to station and match with a stub
● Update track parameters and continue

● After reaching station 1  save measurement without vertex constraint→ Need displaced triggers 
● Propagate to vertex and update  vertex constrained measurement→ Need displaced triggers 
● Challenge for an FPGA implementation  → Need displaced triggers Matrix algebra
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Track propagation from station to station
● Track parameters in the muon system: xn = ( ,φ φb, k = q/pT)  

● Uncertainties on parameters expressed by a 3x3 covariance matrix P

● Assuming a perfect helix (PT=0.3BR) and approximating  with a parabola 
(of constant 1/(2R)) and converting to the track parameter space, we get a 
linear propagation relation:

● Constants a,b,c depend on B-field and dimensions and are different from 
station to station

● Energy loss neglected for station-to-station propagation and added 
inclusively at the end  

Propagation Matrix F Propagation of 
uncertainties

Multiple 
scattering
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Performing linear algebra in FPGAs
● Use of “traditional” logic (LUTs and FFs) requires many multiplications that 

are expensive in FPGA resources 
● Modern FPGAs include DSP cores unused in the current trigger system

● Presence of DSP in modern FPGAs motivated by filtering applications, machine 
learning, and military stuff   

● The operation x+y*z can be mapped to a DSP core reducing substantially 
the resources

● Kalman filter matrix algebra mapped to DSPs
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Adding hits to the track 
● Each detector stub is a measurement zn =  ( ,φ φb)
● A residual is formed :

● The cov. matrix is transformed to measurement space and position  
resolution is accounted for

● Finally a weight (Kalman Gain) is estimated and the state is updated

Associated Stub Propagated track
Matrix H

Transformation of P   Chamber Hit resolution

Kalman Gain matrix inversion...
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Implementing track update in the FPGA 
● A lot of matrix operations including a 2x2 matrix inversion

● Requiring division which is expensive in latency and resources
● To implement the update, we look into the physics
● What does the Kalman gain depend on? 

● It depends on the p (and therefore k) of the track at the station of the update
– Since multiple scattering is depending on p 

● It depends on the hit-pattern of the already reconstructed track
– A track that is updated at  station 1 and already has hits in stations 2,3,4 will have a 

smaller weight at station  1 than a track that has only one hit in station 4

● Therefore instead of the matrix algebra we pre-calculate  the Kalman gain 
as a function of k for each hit pattern and read it from a ROM

● The FPGA used has memory blocks (BRAM) that can be used in read-only mode 
allowing 4K addresses and 9 bit storage

– Therefore we compress k in 12 bits, and we define the gain in 9 bits using one BRAM for 
each update
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Propagation to the beamspot and constraint
● To propagate to the beamspot,  the track passes from the magnet coil, the 

calorimeters, and the tracker. 
● Energy loss must be taken into account  

● Assuming muons in the 50 GeV range, an offset in p is applied

● Expressing it as a function of curvature we get:

● An approximate impact parameter is  propagated as

● A kalman update is performed assuming the “measured” value of impact 
parameter is zero 

Implemented as LUT
 in Block RAM
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Firmware implementation tools
● Firmware written in Vivado high level synthesis (HLS) -C based
● Lessons learned

● Works great if the code is simple. No for loops used, no complicated if statements
● The best  strategy is to code assuming   coding in VHDL/Verilog just not worying 

about the registers
● Example of synthesis : Assume one wants to implement 

(a+b*c)*d + e and synthesizes with a very slow clock speed
  

a

b

c

d

e

DSP
x+y*z

Register

DSP
x+y*z

RegisterRegister

t must be < period
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Higher clock speed

+

● If you ask for higher clock speed, HLS will place registers to optimize the 
timing paths. The same example would look like this:

● In this case HLS will use more pipeline stages to keep the timing path in 
the limits

● Not a perfect procedure yet but saves infinite amount of development 
time

a

b

c

d

e

DSP
y*z

DSP
y*z

+
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Optimizing for logic
● Repeating synthesis for different clock speeds result in the optimal 

latency working point for the  FPGA and the algorithm used:

La
te

nc
y

Clock speed

Too many stages
Need faster FPGA

Slow clock 

Optimal

● As the clock gets faster, latency decreases
● At some point because of the FPGA speed  too many stages are added to 

keep the timing paths in the limits so latency  increases
● In the BMTF Kalman algorithm: Optimal at 200MHz

● We use 160 MHz to keep the same clock with the current running algorithm 
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The Tracking module: Parallilization 
● We exploit parallel processing to implement all possible combinations in 

parallel allowing missed hits

● At least 2 hits are needed to define a track
● We chose the best among tracks with overlapping stubs by an 

approximate χ2

4

3

2

1

1001 1010 1011 1111 1110 1101 1100 0101 0111 0110 0011

propagate
update

miss
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Total firmware implemented in the chip

KF Tracking 
module

KF Tracking 
module

KF Tracking 
module

KF Tracking 
module

KF Tracking 
module

Overlap 
Cleaner

Overlap 
Cleaner

Overlap 
Cleaner

Overlap 
Cleaner

Sorter

stubs

2 muons

2 muons

3 muons

 FPGA 
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Performance in Virtex 7 FPGA
● Resource utilization very low: 

● 16% of the logic elements  
● 25% of the DSP cores

● Latency of 26 clocks at 160 MHz
● Implying we are taking the hits, fit all track combinatorics, perform 

overlap cleaning  and sort them in 162.5 ns or 6.5 bunch crossings!
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Deployment in CMS data taking

● To commission the Kalman filter in data, we  implemented both 
algorithms in the same chip

● We trigger with the current trigger but we read-out the Kalman muons for 
each triggered event in CMS 

● To study the firmware performance and compare data with the emulator 

Data from
TwinMux Deserialization

Masking
Data preparation

Current BMTF

Kalman Filter 

Serialization

Serialization

To GMT

To DAQ

To DAQ

Virtex 7 690T
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Firmware results for both track finders
● About 60% of the chip

● Current BMTF , Kalman, links and infrastructure 
framework

● Experiencing easy synthesis 
● Good timing closure

● Latency of the full system with the Kalman 
trigger  9.50 BX→ Need displaced triggers 

● Kalman filter smaller in size than the 
current track finder!

Kalman-BMTF

BMTF

Infrastructure
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Results from CMS data taking in 2018 (I/II)

● The performance of the hardware is evaluated by comparing the output 
of the boards with an emulator built in software

● Agreement better than 99%  
● Residual disagreement  fixed to be done  in the emulator !→ Need displaced triggers 

● Algorithm has been tested as the default trigger and is ready for Run III
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Results from CMS data taking in 2018 (II/II)

Displaced cosmics!

● Impact parameter output in 2 bits 
● Since only two bits were available in the output frame that goes to 10Gbps 

transceivers
● Looking at cosmic ray data we can see high impact parameter muons 

from cosmics that hit CMS far from the beamline 
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Going into the future: Towards HL-LHC  
● Current FPGA in CMS  Virtex 7 (28nm)→ Need displaced triggers 
● New generation FPGAs (Ultrascale+) at 16nm allow more arithmetic 

operations  in the same  clock period.
● The current Kalman muon trigger is latency constrained. 

● Extra latency budget in HL-LHC 
● How better can we do with modern chips?
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Recall the firmware instantiated in the current chip

KF Tracking 
module

KF Tracking 
module

KF Tracking 
module

KF Tracking 
module

KF Tracking 
module

Overlap 
Cleaner

Overlap 
Cleaner

Overlap 
Cleaner

Overlap 
Cleaner

Sorter

stubs

2 muons

2 muons

3 muons

 FPGA 
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Reusing logic 

Serializer

KF Tracking 
module

De-Serializer

Overlap 
Cleaner

Overlap 
Cleaner

Overlap 
Cleaner

Overlap 
Cleaner

Sorter

● Logic can be re-used to process a lot of 
data before the data from the next 
collision arrive

● In this case, one tracking module is 
instantiated 

● if the clock speed is at least  5x40MHz = 
200 MHz

● Small latency overhead for (de)serialization
● Using a small low effective modern 

FPGA  (Kintex Ultascale+)
● 3% of logic elements
● 8% of DSP
● Latency of 100ns or 4 BX

 

 FPGA 
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Instrumentation R&D towards HL-LHC 
● What we have learned from the Kalman filter exercise:

● Exploiting DSP cores reduces resource usage by large amount
● Re-using logic and going to high clock speed results in even lower utilization
● Given the resource usage in modern FPGAs we can use cost effective chips and still 

fill only 5-10% of them
– A Kintex Ultrascale+ (small chip) has a price of 3-4K$
– A Virtex Ultrascale+ (large chip) has a price of ~ 15K$ 

● What do we (probably) need for Phase II
● We have a lot of data to process  We need more or higher speed links→ Need displaced triggers 

– Current links in CMS running at 10Gbps
● We need to exploit as much as possible the latest trends in technology     
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The challenge in high speed data transmission

PCB Di-electric

Source 
(FPGA/ASIC) optics

Trace 

PCB Di-electric

Source 
(FPGA/ASIC) optics

Trace 

Typical design

Fly-over

connector
fiber

Eye diagram
25Gbps

UCLA Test Board with high speed di-electric shows lossless transmission at 28Gbps

● Dielectric losses too  large at high frequencies (1-3 dB/inch )
● Deploy flyover technology to minimize trace length in PCBs
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Ocean: A demonstrator board for Phase II
● CMS is moving to the ATCA form factor (28x32cm) 
● We are working on a modular design of a baseboard with ATCA services 

and a mezzanine board with FPGA and high speed fly-over optics 

Mezzanine with service FPGA 
managing input clocks and 
other signals from backplane 

Ethernet switch delivering network 
on the board

Mezzanine connector
for CERN IPMC 
Self managing board  

Power delivery,
 and control 

Ultra high density, very low 
profile interposer connecting 
mezzanine and baseboard  

In assembler – Looking forward to the first prototype in the next 10 days

LVDS bus for connection
Extension using RTM
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A demonstrator mezzanine with a SoC 

● Mezzanine with a System on Chip (SoC) and high speed optics
● SoC includes FPGA , quad core processor , real time processor and GPU
● 44 links at 16Gbps and 28 links at 28 Gbps
● Interconnect between the memory /cache and the FPGA logic

● Possible applications other than conventional trigger implemetations 
● Processor memory can be accessed from the FPGA allowing look up tables and 

patterns up to  32 GB assisting FPGA logic
● High speed data streaming to the processor to do data analysis in hardware 
● Heterogeneous computing  Use processor as the main system and FPGA to → Need displaced triggers 

accelerate software    

XILINX ZYNQ Ultrascale+
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Where is computing going?

● XILINX just announced their 7nm technology (Versal)
● Exactly what we are working with but much bigger FPGA logic and links

● Focused on data-center applications/accelerating software
● At 7nm you get much more FPGA logic and many more links at the same 

package (also links at 56 -112 Gbps)
● Can we exploit these devices? 
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Summary
● A Kalman filter algorithm was implemented for the CMS L1 Barrel Muon 

Trigger
● Already commissioned and ready for Run III and HL-LHC

– Last run was taken last night with the Kalman algorithm triggering by default and sending 
data to the HLT

● Very low resource utilization and latency even in current FPGAs
● R&D in new chips and high speed optical links 

● 28 Gbps demonstrated. Waiting for 56 Gbps optics
● A processor in the main processing FPGA seems to become the standard – the 

Ocean blade is a first demonstrator
– We are exited to explore this new world

● There are a lot of intermediate stages between  a  very low latency system 
(algorithm in FPGA) and a long latency system (CPU) 

● Heterogeneous computing becomes the standard and we should exploit it in the 
LHC 
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