
A Kalman filter for the CMS Muon
Trigger for Run III and HL-LHC

Michalis Bachtis

University of California, Los Angeles

Research Techniques Seminar

FNAL, Oct. 23d 2018

2

The CMS L1 Trigger System

● Receives data from Calorimeter and Muon Detectors at a rate of 40
MHz and outputs data at 100 kHz

● Creates physics objects in HW (electron/photons, muons, jets, Missing
energy) Decision taken only at the Global Trigger

3

Introduction
● Muon Trigger: Workhorse of the CMS Physics program

● 75% of CMS publications rely in muon triggers to get the data on tape
– Four out of the “big five” flagship Higgs analyses

● Muon Trigger Requirements for the HL-LHC upgrade
● Trigger muons from electroweak processes with an efficiency> 95%
● Enable displaced muon triggers to gain access to new physics models

Barrel Region

● UCLA Focus:
● Barrel Muon Trigger Track

finding for HL-LHC
● Already involved in current

Barrel Muon Trigger with the
European groups

4

Current Barrel Muon Track Finder

● Consists of 12 processors featuring a Virtex 7 690T FPGA
● Each processor receives data from 5 wheels in x 3 sectors in θ x 3 sectors in φ φ

● Left and right sectors shared in each processor to account for boundaries
● Each processor forwards 3 muons to the Global Muon Trigger (GMT)

● GMT cleans overlap between sectors and track finders and forwards data to the
Global trigger where decision is made

5

Tracking in the CMS barrel muon system

φ

φ
b

● Four stations: each hit with position () and bending angle(φ φb)
● 22 bits per station (maximum 88 bits per track)

● Current track finder assigns momentum using the between two Δφ
stations + assuming the track comes from the center of the detector

● Beamspot constraint improves resolution

6

Beamspot constraint and displaced muons

● While the beamspot constraint improves resolution for prompt muons,
it is sub-optimal for displaced particles

● Momentum mis-measurement results in trigger inefficiency
● Displaced particle models very popular lately Need displaced triggers → Need displaced triggers

decay

real track extension

vertex constrained
track extension

0-1cm

1-10cm

10-30cm
30-100cm

7

A Kalman Filter for BMTF

Initialize

Propagate
Update

Propagate

Update

Propagate

Update

Propagate

Update

Vertex Unconstrained
Measurement

Vertex Constrained
Measurement

● Sequential algorithm: (mathematically equivalent to a χ2 fit)
● Propagate track inwards from station to station and match with a stub
● Update track parameters and continue

● After reaching station 1 save measurement without vertex constraint→ Need displaced triggers
● Propagate to vertex and update vertex constrained measurement→ Need displaced triggers
● Challenge for an FPGA implementation → Need displaced triggers Matrix algebra

8

Track propagation from station to station
● Track parameters in the muon system: xn = (,φ φb, k = q/pT)

● Uncertainties on parameters expressed by a 3x3 covariance matrix P

● Assuming a perfect helix (PT=0.3BR) and approximating with a parabola
(of constant 1/(2R)) and converting to the track parameter space, we get a
linear propagation relation:

● Constants a,b,c depend on B-field and dimensions and are different from
station to station

● Energy loss neglected for station-to-station propagation and added
inclusively at the end

Propagation Matrix F Propagation of
uncertainties

Multiple
scattering

9

Performing linear algebra in FPGAs
● Use of “traditional” logic (LUTs and FFs) requires many multiplications that

are expensive in FPGA resources
● Modern FPGAs include DSP cores unused in the current trigger system

● Presence of DSP in modern FPGAs motivated by filtering applications, machine
learning, and military stuff

● The operation x+y*z can be mapped to a DSP core reducing substantially
the resources

● Kalman filter matrix algebra mapped to DSPs

10

Adding hits to the track
● Each detector stub is a measurement zn = (,φ φb)
● A residual is formed :

● The cov. matrix is transformed to measurement space and position
resolution is accounted for

● Finally a weight (Kalman Gain) is estimated and the state is updated

Associated Stub Propagated track
Matrix H

Transformation of P Chamber Hit resolution

Kalman Gain matrix inversion...

11

Implementing track update in the FPGA
● A lot of matrix operations including a 2x2 matrix inversion

● Requiring division which is expensive in latency and resources
● To implement the update, we look into the physics
● What does the Kalman gain depend on?

● It depends on the p (and therefore k) of the track at the station of the update
– Since multiple scattering is depending on p

● It depends on the hit-pattern of the already reconstructed track
– A track that is updated at station 1 and already has hits in stations 2,3,4 will have a

smaller weight at station 1 than a track that has only one hit in station 4

● Therefore instead of the matrix algebra we pre-calculate the Kalman gain
as a function of k for each hit pattern and read it from a ROM

● The FPGA used has memory blocks (BRAM) that can be used in read-only mode
allowing 4K addresses and 9 bit storage

– Therefore we compress k in 12 bits, and we define the gain in 9 bits using one BRAM for
each update

12

Propagation to the beamspot and constraint
● To propagate to the beamspot, the track passes from the magnet coil, the

calorimeters, and the tracker.
● Energy loss must be taken into account

● Assuming muons in the 50 GeV range, an offset in p is applied

● Expressing it as a function of curvature we get:

● An approximate impact parameter is propagated as

● A kalman update is performed assuming the “measured” value of impact
parameter is zero

Implemented as LUT
 in Block RAM

13

Firmware implementation tools
● Firmware written in Vivado high level synthesis (HLS) -C based
● Lessons learned

● Works great if the code is simple. No for loops used, no complicated if statements
● The best strategy is to code assuming coding in VHDL/Verilog just not worying

about the registers
● Example of synthesis : Assume one wants to implement

(a+b*c)*d + e and synthesizes with a very slow clock speed

a

b

c

d

e

DSP
x+y*z

Register

DSP
x+y*z

RegisterRegister

t must be < period

14

Higher clock speed

+

● If you ask for higher clock speed, HLS will place registers to optimize the
timing paths. The same example would look like this:

● In this case HLS will use more pipeline stages to keep the timing path in
the limits

● Not a perfect procedure yet but saves infinite amount of development
time

a

b

c

d

e

DSP
y*z

DSP
y*z

+

15

Optimizing for logic
● Repeating synthesis for different clock speeds result in the optimal

latency working point for the FPGA and the algorithm used:

La
te

nc
y

Clock speed

Too many stages
Need faster FPGA

Slow clock

Optimal

● As the clock gets faster, latency decreases
● At some point because of the FPGA speed too many stages are added to

keep the timing paths in the limits so latency increases
● In the BMTF Kalman algorithm: Optimal at 200MHz

● We use 160 MHz to keep the same clock with the current running algorithm

16

The Tracking module: Parallilization
● We exploit parallel processing to implement all possible combinations in

parallel allowing missed hits

● At least 2 hits are needed to define a track
● We chose the best among tracks with overlapping stubs by an

approximate χ2

4

3

2

1

1001 1010 1011 1111 1110 1101 1100 0101 0111 0110 0011

propagate
update

miss

17

Total firmware implemented in the chip

KF Tracking
module

KF Tracking
module

KF Tracking
module

KF Tracking
module

KF Tracking
module

Overlap
Cleaner

Overlap
Cleaner

Overlap
Cleaner

Overlap
Cleaner

Sorter

stubs

2 muons

2 muons

3 muons

 FPGA

18

Performance in Virtex 7 FPGA
● Resource utilization very low:

● 16% of the logic elements
● 25% of the DSP cores

● Latency of 26 clocks at 160 MHz
● Implying we are taking the hits, fit all track combinatorics, perform

overlap cleaning and sort them in 162.5 ns or 6.5 bunch crossings!

19

Deployment in CMS data taking

● To commission the Kalman filter in data, we implemented both
algorithms in the same chip

● We trigger with the current trigger but we read-out the Kalman muons for
each triggered event in CMS

● To study the firmware performance and compare data with the emulator

Data from
TwinMux Deserialization

Masking
Data preparation

Current BMTF

Kalman Filter

Serialization

Serialization

To GMT

To DAQ

To DAQ

Virtex 7 690T

20

Firmware results for both track finders
● About 60% of the chip

● Current BMTF , Kalman, links and infrastructure
framework

● Experiencing easy synthesis
● Good timing closure

● Latency of the full system with the Kalman
trigger 9.50 BX→ Need displaced triggers

● Kalman filter smaller in size than the
current track finder!

Kalman-BMTF

BMTF

Infrastructure

21

Results from CMS data taking in 2018 (I/II)

● The performance of the hardware is evaluated by comparing the output
of the boards with an emulator built in software

● Agreement better than 99%
● Residual disagreement fixed to be done in the emulator !→ Need displaced triggers

● Algorithm has been tested as the default trigger and is ready for Run III

22

Results from CMS data taking in 2018 (II/II)

Displaced cosmics!

● Impact parameter output in 2 bits
● Since only two bits were available in the output frame that goes to 10Gbps

transceivers
● Looking at cosmic ray data we can see high impact parameter muons

from cosmics that hit CMS far from the beamline

23

Going into the future: Towards HL-LHC
● Current FPGA in CMS Virtex 7 (28nm)→ Need displaced triggers
● New generation FPGAs (Ultrascale+) at 16nm allow more arithmetic

operations in the same clock period.
● The current Kalman muon trigger is latency constrained.

● Extra latency budget in HL-LHC
● How better can we do with modern chips?

24

Recall the firmware instantiated in the current chip

KF Tracking
module

KF Tracking
module

KF Tracking
module

KF Tracking
module

KF Tracking
module

Overlap
Cleaner

Overlap
Cleaner

Overlap
Cleaner

Overlap
Cleaner

Sorter

stubs

2 muons

2 muons

3 muons

 FPGA

25

Reusing logic

Serializer

KF Tracking
module

De-Serializer

Overlap
Cleaner

Overlap
Cleaner

Overlap
Cleaner

Overlap
Cleaner

Sorter

● Logic can be re-used to process a lot of
data before the data from the next
collision arrive

● In this case, one tracking module is
instantiated

● if the clock speed is at least 5x40MHz =
200 MHz

● Small latency overhead for (de)serialization
● Using a small low effective modern

FPGA (Kintex Ultascale+)
● 3% of logic elements
● 8% of DSP
● Latency of 100ns or 4 BX

 FPGA

26

Instrumentation R&D towards HL-LHC
● What we have learned from the Kalman filter exercise:

● Exploiting DSP cores reduces resource usage by large amount
● Re-using logic and going to high clock speed results in even lower utilization
● Given the resource usage in modern FPGAs we can use cost effective chips and still

fill only 5-10% of them
– A Kintex Ultrascale+ (small chip) has a price of 3-4K$
– A Virtex Ultrascale+ (large chip) has a price of ~ 15K$

● What do we (probably) need for Phase II
● We have a lot of data to process We need more or higher speed links→ Need displaced triggers

– Current links in CMS running at 10Gbps
● We need to exploit as much as possible the latest trends in technology

27

The challenge in high speed data transmission

PCB Di-electric

Source
(FPGA/ASIC) optics

Trace

PCB Di-electric

Source
(FPGA/ASIC) optics

Trace

Typical design

Fly-over

connector
fiber

Eye diagram
25Gbps

UCLA Test Board with high speed di-electric shows lossless transmission at 28Gbps

● Dielectric losses too large at high frequencies (1-3 dB/inch)
● Deploy flyover technology to minimize trace length in PCBs

28

Ocean: A demonstrator board for Phase II
● CMS is moving to the ATCA form factor (28x32cm)
● We are working on a modular design of a baseboard with ATCA services

and a mezzanine board with FPGA and high speed fly-over optics

Mezzanine with service FPGA
managing input clocks and
other signals from backplane

Ethernet switch delivering network
on the board

Mezzanine connector
for CERN IPMC
Self managing board

Power delivery,
 and control

Ultra high density, very low
profile interposer connecting
mezzanine and baseboard

In assembler – Looking forward to the first prototype in the next 10 days

LVDS bus for connection
Extension using RTM

29

A demonstrator mezzanine with a SoC

● Mezzanine with a System on Chip (SoC) and high speed optics
● SoC includes FPGA , quad core processor , real time processor and GPU
● 44 links at 16Gbps and 28 links at 28 Gbps
● Interconnect between the memory /cache and the FPGA logic

● Possible applications other than conventional trigger implemetations
● Processor memory can be accessed from the FPGA allowing look up tables and

patterns up to 32 GB assisting FPGA logic
● High speed data streaming to the processor to do data analysis in hardware
● Heterogeneous computing Use processor as the main system and FPGA to → Need displaced triggers

accelerate software

XILINX ZYNQ Ultrascale+

30

Where is computing going?

● XILINX just announced their 7nm technology (Versal)
● Exactly what we are working with but much bigger FPGA logic and links

● Focused on data-center applications/accelerating software
● At 7nm you get much more FPGA logic and many more links at the same

package (also links at 56 -112 Gbps)
● Can we exploit these devices?

31

Summary
● A Kalman filter algorithm was implemented for the CMS L1 Barrel Muon

Trigger
● Already commissioned and ready for Run III and HL-LHC

– Last run was taken last night with the Kalman algorithm triggering by default and sending
data to the HLT

● Very low resource utilization and latency even in current FPGAs
● R&D in new chips and high speed optical links

● 28 Gbps demonstrated. Waiting for 56 Gbps optics
● A processor in the main processing FPGA seems to become the standard – the

Ocean blade is a first demonstrator
– We are exited to explore this new world

● There are a lot of intermediate stages between a very low latency system
(algorithm in FPGA) and a long latency system (CPU)

● Heterogeneous computing becomes the standard and we should exploit it in the
LHC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

