Plans for TDR Beam section

Z. Pavlovic

Planning for TDR (talk at Collaboration meeting)

The Team

- Editors selected by consortia leaders
- Several new members to the team: KSU copy editor, ND CDR editors, Karagiorgi, Sorel, Stewart, Resnati
- Plan is to produce 5 volumes ...

Technical Design Report Team

Editors: Tim Bolton, Sam Zeller
Technical Support: Anne Heavey, Dave DeMuth, Brett Viren, KSU copy editor (TED)

- Volume 1: Executive Summary (Ed Blucher, Stefan Soldner-Rembold)
 - Computing Executive Summary (Andrew Norman, Heidi Schellman)
 - Near Detector Executive Summary (Mike Kordosky, Steve Manly)
- Volume 2: Physics (Albert de Roeck, Jon Urheim)
 - Calibration Strategy (Sowjanya Gollapinni, Kendali Mahn)
- Volume 3: Single Phase Far Detector
 - Design Mctivation and Overview
 - APAs (Dave Schmitz)
 - TPC Electronics (Mike Mooney)
 - HV System (Rob Plunkett)
 - Photon Detection System (Bob Wilson)
 - DAQ (Jim Brooke, Georgia Karagiorgi, Brett Viren)
 - Cryogenics Instrumentation and Slow Controls (CISC) (Glenn Horton-Smith, Carmen Palormares)
 - Calibration Hardware (TBD)
 - Technical Coordination (Jim Stewart)
- Volume 4: Dual Phase Far Detector
 - Design Mctivation and Overview
 - CRPs (Dominique Duschesneau, Edoardo Mazzucato)
 - TPC Electronics (Slavic Galymov, Jamie Dawson)
 - HV System (Francesco Pietropaolo, Jae Yu)
 - Photon Detection System (Burak Bilki, Michel Sorel)
 - DAQ (Jim Brooke, Georgia Karagiorgi, Brett Viren)
 - Cryogenics Instrumentation and Slow Controls (CISC) (Glenn Horton-Smith, Carmen Palormares)
 - Calibration Hardware (TBD)
 - Technical Coordination (Filippo Resnati)
- Volume 5: Technical Coordination (Steve Kettell)

Beam section

- Section in Volume2: DUNE Physics
- Assigned to:

 Laura Fields with
 contributions from
 Luke Pickering
 and Zarko
 Pavlovic

	Stan	dard neutrino oscillation physics program	1
	1.1	Overview and Theoretical Context	1
	1.2	Expected Event Rate and Oscillation Parameters	3
	1.3	Sensitivity Methods	5
		1.3.1 GLoBES	6
		1.3.2 CAFAna	6
		1.3.3 DUNE Fits	8
	1.4	Flux Inputs and Uncertainties	8
		1.4.1 On-axis Neutrino Flux and Uncertainties	9
		1.4.2 Off-axis Neutrino Flux and Uncertainties	9
		1.4.3 Alternate Beamline Configurations	14
Ī	1.5	Neutrino Interactions and Uncertainties	14
		1.5.1 Interaction Model Summary	14
		1.5.2 Interaction Model Uncertainties	16
	1.6	Near Detector and Uncertainties	22
		1.6.1 The Near Detector concept	22
		1.6.2 Simulations and parameterized reconstruction	24
		1.6.3 Event Selections, Samples	25
		1.6.4 Detector Response Systematic Uncertainties	27
		1.6.5 Role of Near detector in flux and cross section systematic uncertainty assessment	27
	1.7	Far Detector and Uncertainties	29
		1.7.1 Event reconstruction and kinematic variables	29
		1.7.2 DUNE CVN event selection	30
	1.8	Analysis Spectra and Samples	36
		1.8.1 Near Detector Samples	36
		1.8.2 Far Detector Samples	36
	1.9	Effect and Propagation of Systematic Uncertainties	37
		1.9.1 Discussion of cancellations and constraints	37
		1.9.2 Potential sources of bias	37
	1.10	Sensitivities	39

1.10.1	Mass Hierarchy							-			39
1.10.2	CP-Symmetry Violation										40
1.10.3	Precision Oscillation Parameter Measurements										40

Schedule

- September: Consortium/working group editors appointed. Kick-off meeting on Sept 11th to discuss plans for TDR and lessons learned from IDR
- October: Outlines due, including outline of protoDUNE strategy
- November: First drafts due including first pass at requirements table. Editors' initial review complete by November 15
- December: Second drafts due. Must include initial cost, risk, schedule, and interface tables, plus any iteration of protoDUNE strategy and requirements
- January: Review of second drafts
- February: Outcome of independent reviews of second drafts back to consortia/working groups for incorporation/discussion
- March: Final drafts due
- April: Review of final documents complete
- Submit final document to LBNC

•	Laura made a first draft with text and figures (mostly
	placeholders)

- Luke is working on off-axis neutrino flux and uncertainties
 - next talk
- Following slides show the plots in the first draft

Figure 1.1: Visualization of the focusing system taken from the Geant4-based simulation.

 Fig 1.2: Neutrino flux at the FD in neutrino mode (left) and antineutrino mode (right)

Figure 1.3: Ratio of neutrino mode muon neutrino fluxes at the near and far detectors (left) and uncertainties on the ratio (right) (right). To be updated.

Figure 1.4: Flux uncertainties at the far detector as a function of neutrino energy in neutrino mode (left) and antineutrino mode (right) for, from top to bottom, muon neutrinos, muon antineutrinos, electron neutrinos and electron antineutrinos.

Figure 1.5: Focusing (left) and hadron production (right) uncertainties on the neutrino mode muon neutrino flux at the far detector.

Figure 1.6: (a) The neutrino energy as a function of parent pion energy for different angles away from the pion momentum vector. Figure from Ref. [?]. (b) The DUNE near detector flux predictions over a range of off-axis positions for a near detector at $575\,\mathrm{m}$ downstream of the target station.

 Neutrino flux comparison at ND on-axis and off-axis for all flavors in FHC and RHC

 Muon neutrino flux broken by parent for on-axis and offaxis flux at ND

Alternate beam configurations

Figure 1.8: Comparison of standard and tau-optimized neutrino fluxes.

Toward TDR

- First draft due November 1st
 - Report on status and plans for missing pieces due today
- Goal of the first draft is to identify any holes in the document early
- Laura already put in text and figures
 - next: polish/update/add any missing plots