Fermilab

Indian Institutions and Fermilab Collaboration DAE-DOE Discovery Science Collaboration

DUNE

Sanjib Mishra, USC Independent Technical Design Review

DUNE-ND

May 28-29, 2015

Indian Institutions and Fermilab Collaboration DAE-DOE Discovery Science Collaboration

DUNE-ND Magnet

Internal Technical Design Review DUNE-ND May 28-29, 2015 Electromagnetic Applications Section Control Instrumentation Division Bhabha Atomic Research Centre, Trombay, Mumbai

Dipole Magnet- Requirements

- Tracking detectors and ECAL Modules will reside in 0.4T dipole magnetic field volume with inner dimensions 4.5m*4.5m*8.1m.The magnet needs to support and anchor the detectors
- Dipole magnet should be open-close C-type structure
- Field uniformity in 3.5 m*3.5 m*7 m volume better than 2%
- Field uniformity in 1m*1m*2m better than 1%
- Detector Fiducial volume mass ~8 tonnes

XII Plan layout

	Particulars of work plan	Cost in Millions of INR
	LBNE Dipole magnet Design Report Thermal, Electrical, Hydraulic, Structural and Magnetic	11
	Prototype magnet and Power supply Development	25
	Prototype movable assembly Development	12
	Magnetic measurement	5
	Magnet Simulations	2
	Magnet Design, structural, thermal design software	25
**	Infrastructure development	20
	Department of Science & Technology	Fermilab

Magnet Layout

Magnet Assembly in closed condition

of Science & Technology

vepar unenc

Magnet assembly in open condition

Perspective views of the Magnet

Magnet with top and bottom Magnet with top and bottom plates plates hidden **‡** Fermilab Department of Science Technology DUNE

Zoomed view of 'C' core assembly, coil and supporting plates

Magnetic Design

Coil-Bobbin Design: salient features

- 100 mm gap between the two bobbins
- The half cores will move with the coils
- The detectors will be accommodated in the space inside the two bobbins
- Water-cooled hollow copper conductors have been used
- Detachable type cooling tube attachments
 to chiller
- The Design can support upto 10 Tonnes of detector weight Department of Science
 Science

Magnetic simulation Results

Arrow plot of Magnetic field (x direction)

‡ Fermilab

Opening of core and coil bobbin

Bx plot at Centre of 3.5m*3.5m*8.1 magnet volume taken along z axis

Electrical and Thermal design parameters

Particulars	Units	23/13/2R (Hollow conductor)
8 layer Double pan cake Coil	-	8+8
MMF	Ampere Turns	1600000
Electrical turns	-	1376
Current in conductor	Ampere	1163
Current Density	A/mm ²	2.96
Copper Cross-sectional Area	mm^2	393
Water flow area	mm^2	133
Total Resistance	Ω	1.80
Total Inductance	Henry	11.7
Total weight of Copper	MT(Metric Tonnes)	150
Time to settle of current	Seconds	32
<i>Total length of Copper conductor in one hydraulic circuit</i>	т	480 (available 520 m)
Total Power Loss (MW)	MW	<i>2.43</i>
& Technology		DUNE

Hydraulic design Parameters

Particulars	Units	Value
Single hydraulic circuit (Turns, length)	meter	16,480
Total number of hydraulic circuits in parallel	-	86
Power Loss per hydraulic circuit	kW	28.25
Cooling Flow rate	LPM	<u>8.968</u>
Pressure drop in single hydraulic circuit	bar	8.58
Water velocity	m/s	1.15
Temperature difference between inlet and outlet header for single hydraulic circuit	°K	45
Cooling Surface area	m^2	19.59
Reynolds Number	-	21900
Prandtl number	-	4.536
Nusselt Number	-	112.93
Heat Flux	kW/m^2	1.44
Temperature difference between Copper surface and Bulk water temperature	°K	0.26
Bulk water temperature (taken ref inlet water temperature as 20)	°C	42.5
Heat Transfer Coefficient	$W/m^2/^{o}K$	5458
Technology		DUNE

Magnetic Measurements

Magnetic Measurement methods

- 1. Hall probe and search coil based magnetic measurement system has been envisaged for magnetic qualification of LBNE Dipole Magnet.
- 2. The parameters to be measured are (a) Magnetic field density, and (b) Magnetic field uniformity in the GFR.
- **3.** Modular Magnetometer PCBs housing Hall probes and PCB based search coils/air core inductors shall be fabricated and magnetic field mapped using multichannel Data Acquisition system having Lab VIEW GUI for instant data interpretation.
- 4. The large Good Field Region poses challenges for Magnetic field measurement, for which moving SS frame movable on linear bearings shall be designed. Modular PCB Magnetometers shall be mounted on this frame and measurements shall be carried out at discrete longitudinal locations in one plane.
- 5. Possibility of using Magneto-Optical (MO) sensors for Magnetic field measurement using shall be explored.

Magnetic Measurements System

Structural Design

'C' Core Type I

'C' Core Type II

Coil Bobbin

COIL

rmilab

Max. Deformation of bobbin = 28.6 mm

A: Static Structural Total Deformation Type: Total Deformation Unit: mm Time: 1 08-11-2013 15:52 28.619 Max 25.439 22.259 19.079 15.899 12.72 9.5397 6.3598 3.1799 0 Min	<image/>	
	0 <u>2.5e+003</u> 1.25e+003	5e+003 (mm)

Maximum Von Mises Stress = 190 MPa

Max. deformation (buckling)=1 mm

Max. Von Mises Stress (buckling) = 5.20 MPa

Max. Deformation of C-Segment = 1.16 mm

A: Static Structural Total Deformation		
Type: Total Deformation		
Unit: m		
Time: 1		
04-11-2013 15:46		
0.0011617 Max		
0.0010326		
0.00090353	A CONTRACTOR OF	
0.00077446		
0.00064538		an a
0.00051631		
0.00038723		
0.00025815		
0.00012908		
C Min		
	0.000 2.0	4.000 (m)
DALE		

the second

Max. Von Mises Stress =3.5 MPa

A: Static Structural				
Equivalent Stress Tune: Equivalent (von-Miser) Stress				
Type: Equivalent (von-twises) stress Linite Da				
Unic Pa Time: 1			Contraction of the second s	
11///ei 1 0/ 11 2012 15:40				
04-11-2013 13:46				
D.1166-6				
3.1100e0				
Automatic				
2.3375e6				
1.9479e6				
1.5584e6				
7.7927e5				
3 8971e5				
1 40 40 56-				
149.48 Min				
				F 000 ()
	0.000			
	0.000	2,300		5.000 (m)
	0.000			5.000 (m)

Max. Deformation (buckling)=1.00 mm

B: Linear Buckling			
Total Deformation			
Type: Total Deformation	1		
Load Multiplier: 36.953			
Unit: mm			
Time: 36.953		and the second se	
08-11-2013 13:30			
- 📻 1.0001 Max			
0.88894			
0.77783			
0.66671			
0.55559			
0.44447			
0.3335			
0.22224			
0.11113			
- 📇 U Min			
		C	
	0	2e+003	4e+003 (mm)
	1e+003	3e+003	

Max . Von Mises Stress(buckling) =0.664 MPa

B: Linear Buckling				
Type: Equivalent (van-Mises) Stress		<u>_</u>		
Load Multinlier 36 953				
Unit: MPa				
Time: 36 953				
08-11-2013 13:31				
00 11 2015 15.51				
0.66447 Max Automati; 0.51682 0.44299 0.36916 0.29533 0.22151 0.14768 0.073854 2.667e-5 Min				
	0	2e+003		<u>4e+</u> 003 (mm)
		1e+003	3e+003	

Max. Von- Mises Stress of roller =11.9 MPa

A: Static Structural	
Equivalent Stress	
Type: Equivalent (von-Mises) Stress	
Unit: Pa	
Time: 1	
04-11-2013 14:29	
- 📻 1.1925e7 Max	
1.0601e7	
9.2782e6	
7.955e6	
6.6318e6	
5.3086e6	
3.9855e6	
2.6623e6	
1.3391e6	
15887 Min	
له.	
N	
T	

Bill of Material

PART	Quantity	Material	Weight per unit (Tonnes)	Total weight (Tonnes)
Bobbin	2	Austenitic SS	25.7	52
C-Segment Type I	81	Soft Magnetic Steel	4.9	396
C-Segment Type II	81	Soft Magnetic Steel	5.2	421
Coil	2	OFE Copper	75	150
Anchor Plates (Top)	2	Austenitic SS	32.5	65
Anchor Plates (Bottom)	2	Austenitic SS	54	108
Total Weight of the assembled magnet (except detectors and fasteners)				1192

Conclusion: The Max. Von Mises Stress in the critical parts are

Alternate core design : Laminated Core structure

Discussions

- Field uniformity, magnitude of magnetic field and the desired good field region(GFR): *Present design has magnetic field uniformity better than 2% in a GFR of 3.5m*3.5m*7.0 m.*
- What is the operational life of Magnet?
- Detector lay-out : Weight/Volume, location and drawings of individual detectors
- Permissible temperature in detector vicinity and dependence of detector performance on temperature
- Permissible pressure of cooling water in magnet facilities (safety issues)
- Limitation on LPM (if any)
- Dipole magnet inclination
- Limitation on longitudinal and transverse size and how to retrofit the magnet on beam line
- Drawings of accelerator Lay-out
- Are magnetic field measurements required during experiments?
- Limitation on power availability (V, I, MW)
- Is there any possibility of charged heavy particle interaction with magnet/sub-systems (Concerns of Nuclear irradiations)

Department of Science & Technology

Thanks

