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Outline

e MINERVA detector and the problem with the vertex reconstruction in DIS
events

e Deep convolutional neural network

e Results from ML based vertex reconstruction

e Implication of domain adversarial neural network to remove/limit the
model bias

What is model bias?

-We train the ML model using simulated events and test the model on real data.
-Our models are not perfect ->domain discrepancies arises

- Find ways to reduce any biases in the algorithm that may come

from training our models in one domain and applying them in another
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Problem with vertex finding: motivation behind
ML technique

e With the increase of our beam energy, there is an increase in the hadronic
showers near the event of interactions.

e Cause more difficulty in vertexing with increase rates of failure in getting
the correct vertex position

reconstructed vertex
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ML Approach To Determine Event Vertex

- Goal: Find the location of the event vertex

-Treat the localization as a classification problem

4 tracker modules between each target
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Convolutional neural network (CNN)

Stacking layers of convolutions leads from geometric / spatial representation
to semantic representation:
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Convolutions
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We have three separate
convolutional towers that
look at each of the X, U,
and V images.
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Network structure

We have three separate convolutional towers that look at each of the X

Each tower consists of four iterations of convolution and max pooling layers
with ReLUs acting as the non-linear activations and after that there is a
fully connected layer

The out of three views are concatenated and fed into another fully
connected layer .This is the input to the final fully connected layer with
output -> input to the softmax layer.

We use non-square kernels, they are much larger along the transverse
direction than along the z direction-> localization information contained
directly in the energy distribution along Z. So, we allow the images to
shrink along the transverse dimension but largely preserved the image
size along the Z axis. Also, we pooled the tensor elements together only
along the transverse axis, not along the z axis.




Reconstructed z-segment

Reconstructed z-segment
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N Events

Track-based approach vs ML approach
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Domain Adversarial Neural Network (DANN)

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818

CNN:

e Train with labeled data: in our case it is Monte Carlo
e Test with unlabeled data: in our case it is real data

Limitation:

Labeled simulated data for training >> unlabeled real data for testing

Our models are not perfect ->domain discrepancies arises

Need strategy to reduce any biases in the algorithm that may come
from training our models in one domain and applying them in another

@NN comes into t@
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http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818

DANN

Train from the labeled source domain (MC ) and unlabeled target

domain (real data)

Goal to achieve the features:
1) discriminative for the main learning task on the source domain
2) indiscriminate with respect to the shift between domains

X view U view V view

7

This adaptation behavior
can be achieved by
adding a gradient
reversal layer with few
standard layers

-
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http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818

DANN

e Two classifiers into the network:
Label predictor: output
works internally

¢ Minimize the loss of the label classifier so that network can predicts the input
level

e Maximize the loss of the domain classifier so that network can not distinguish
between source and target domain.

e The network develops an insensitivity to features that are present in one

domain but not the other, and train only on features that are common to
both domains.
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(Daen

IData: hits—= IData: hits—ua IData: hits—~ |
I THeigsht: 127 Hleight: 127 ITleight: 127
Wiclth: 50 Wiclth: 25 Wiclth: 25

e -y e ————— e ——— —_—

<
- -

—~
| Comnmvolutiornn Umnit h 4 N

Convolution Convolution Convolution
| Outputs: 12 Outputs: 12 Outputs: 12
HKernel Size: (83.3) HKernel Size: (S.3) HKernel Size: (S.3)

I v

v v
| C o C o C o

| Ma<bPoolinie NMa<EPoolitie Ma<EPoolitie
HKernel Size: (2,1) HKernel Size: (2,1) HKernel Size: (2.1)
Stride: (2.1) Stride: (2.1) Stride: (2.1)

A

—~
| Comnvoluatiornn Umnit ~N~ h 4 1

Convolution Convolution Convolution
| Outputs: 20 Outputs: 20 Outputs: 20

HKernel Size: (7.3) HKernel Size: (7.3) HKernel Size: (7.3)

v v v j
| C e C e C e D |
)

HKernel Size: (2,1) HKernel Size: (2.1) HKernel Size: (2.1)
Stride: (2.1) Stride: (2.1) Stride: (2.1)

| [ DN axEPooling ] DN axPooling ] N axEPooling

—~
| Comnmvoluatiorn: Unit ~ N )

CTonivolution CTonivolution Tonivolution
| Outputs: =28 Outputs: =28 Outputs: =28

HKernel Size: (7.3) HKernel Size: (7.3) HKernel Size: (7.3)

v v j
| C T C e C T D |
J

Kernel Size: (2,1) Kernel Size: (2,1) Kernel Size: (2,1)
Stride: (2.1) Stride: (2.1) Stride: (2.1)

| [ Ma<bPoolinie J Ma<bPoolitie J Ma<bPoolinie

—~
| Comnvoluatiornn Unit N h 4 K

Convoluation Convolution Convolution
| Outputs: 36 Outputs: 36 Outputs: 36
HKernel Size: (7.3) HKernel Size: (7.3) HKernel Size: (7.3)

I v

| N ax<EPPooling N axEPPooling NMax<EPPooling
Kernel Size: (2,1) HKernel Size: (2,1) HKernel Size: (2,1) |

| Stride: (=2,1) Stride: (2,1) Stride: (2,1)
T T == — e — — — S — e e
| Fually Cormnmnmmected
InnerBProduct ITnnerBProduct InnerProduct
| Outputs: 196 Outputs: 196 Outputs: 196

| C o C e C oo

| A v

| | IDropout ' ' IDropout ' ' IDropout
— et

= 2

InnerBProduct
Outputs: 128

A s

Rel.UJ

v

C
C
C FEyw——
C

v

TnnerbProduct
Outputs: 11

WA WAWA,

J \

T Doxrmain Classifiex

Gradient Reversal

v

ITnnerBProduct
Outputs: 1024

= 2

Rel. U

v

IDropout

InnerProduct S
I Outputs: 11 ilence |
C Softmasx w,/ Loss j | ( ITnnerProduct

Outputs: 1024

Rel. U

v

Dropout

v

InnerProduct
Outputs: 1

Sigmoid Cross
Entropsy Loss

15 |

\WAWAWEAWAWAWALWEWAW,

|
|
|
|
\



How to test DANN ?

e Find source and target with distinct features.

e our source and target domains may be too similar for the domain classifier to be able to
distinguish between them.

We train with Monte Carlo (MC) events and use different MC as target

e We tried by few ways to get the target sample having different features
than source: changing the flux, physics model, kinematic division etc.
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Final state interaction(FSI) On/Off

e We assume that “FSI 1s on” in real world and so we turned on FSI in our
testing sample

Training DANN
sample partner Testing Model
(Source (target sample
domain) domain)
FSI off (1.2M) N/A FSI on out of domain
FSI on(1.2M) N/A FSI on In domain

17

The expectation:
CNN in domain
will perform better
than CNN out of
domain.
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Final state interaction(FSI) On/Off

e We assume that “FSI 1s on” in real world and so we turned on FSI in our
testing sample

Training DANN
sample i
P partner Testing Model
(Source (target sample
domain) domain)
FSI off (1.2M) N/A FSI on Out of domain
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" N The expectation:
. CNN in domain
FSI on(1.2M) N/A FSTon In domain will perform better
.............................................................................................................................................................................. than CNN out of
Out of domain with domain.
FSI off(1.2M) | FSI off(1.2M) FSI on . in domain DANN
5 partner
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The expectation: though
model is trained “out of
domain”, it would show the
similar performance as
“CNN in domain” since we

partner.

\,

consider “in domaimn” DANN
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Red curve: Adding a DANN partner to the model trained in the out-of
domain we are able to recover the performance of the model natively
trained in the correct domain
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Final state interaction(FSI) On/Off

e We assume that “FSI 1s on” in real world and so we turned on FSI in our
testing sample

Training DANN
sample partner Testing
(Source (target sample Model
domain) domain)
FSI off (1.2M) N/A FSI on Out of domain
FSI on(1.2M) N/A FSI on In domain
. Out of domain with,
FSI off(1.2M) | FSI off(1.2M) FSI on . in domain DANN
’ partner
e . Out of domain with
i i in domain DANN
FSI off(0.6M) FSI off(0.6M) FSI on partner(half
sample)

—1 |will perform better
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The expectation:
CNN in domain

than CNN out of
domain.

The expectation: though
model is trained “out of
domain”, it would show the
similar performance as
“CNN in domain” since we
consider “in domain”

| DANN
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Summary

e We see improvement factor of ~2-3 with DNN based
reconstruction over track-based reconstruction

e We simulated with different FSI behavior and we saw the cross-domain
performance degradation. However, by using DANN to restrict the
feature extraction only to features in both domains we can train a
domain-invariant classifier

e MINERVA is expanding ML infrastructure in other studies like hadron
multiplicity, particle identification and we will use DANN to reduce
the bias coming from the physics model.
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Backup slides
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classifying events in 11 segments

DNN Row
UEECEREE [HIDN Normalized Event Improvement+
Target Normalized Event Counts : o
o ounts+stat error stat error (%)
+stat error (%) (%)
Upstream of Target 1 41.11+£0.95 68.1+0.0 27/+1.14
1 32.0+0.26 94.4+0.13 11.7+0.3
Between target 1 and 2 80.8+0.46 82.1+0.37 1.3+0.6
2 77.9+0.27 94.0+0.13 16.1+0.3
Between target 2 and 3 380.1+0.46 34.8+0.34 4.7+0.6
3 /8+0.3 92.4+0.16 14.4+0.34
Between target 3 and 4 90.5+0.2 93.0+0.14 2.5+0.25
4 78.3+£0.35 89.6+0.22 11.3+0.42
Between target 4 and 5 54 3+1.12 51.6+0.95 -2.7+£0.15
5 31.6+0.3 91.2+0.18 9.5+0.34
Downstream of target 5 99.6+0.01 99.3+0.13 -0.3+0.02
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