How well do we need to know detector parameters for supernova neutrinos?

Erin Conley DUNE Calibration Task Force Meeting October 30, 2018

Outline

- Introduction
 - Forward fitting
 - Supernova flux model
- Forward fitting studies
 - Energy resolution
 - Energy scale
 - Energy shift
 - Cross section
- Takeaways + Next Steps

Forward Fitting: Introduction

- Goal: provide information about DUNE's ability to constrain pinched-thermal model parameters
- For the purposes of this study:
 - Model: pinched-thermal flux
 - Detector response: Gaussian smearing
 - Data: SNOwGLoBES smeared event rates

Forward Fitting Schematic

Supernova Flux Model

 Supernova neutrino spectrum AKA "pinched-thermal form":

$$\phi(E_{\nu}) = \mathcal{N}\left(\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right)^{\alpha} \exp\left[-(\alpha+1)\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right]$$

- E_{ν} : Neutrino energy
- \mathcal{N} : Normalization constant (related to luminosity, ϵ)
- $\langle E_{\nu} \rangle$: Mean neutrino energy
- α: Pinching parameter; large α corresponds to more pinched spectrum
- Parameters of interest: ϵ , $\langle E_{\nu} \rangle$, α
- Supernova neutrinos expected to contain information about parameters

Energy spectra for a SN 10kpc from Earth (K. Scholberg) Note: Fluence refers to a time-integrated flux.

Forwarding Fitting Tools

- χ^2 minimization for supernova energy spectra – how well do we know the parameters?
- Study uses the following tools:
 - "Test spectra" corresponding to supernova event rates in DUNE detector with given set of pinching parameters $(\alpha^0, \langle E_{\nu} \rangle^0, \varepsilon^0)$
 - Grid of test spectra containing combinations of $(\alpha, \langle E_{\nu} \rangle, \varepsilon)$

10/31/18

Duke

Example Fake Supernova Spectrum

Forward Fitting: "Sensitivity"

- Use SNOwGLoBES to generate binned energy spectra for a given set of pinched-thermal parameters $(\alpha^0, \langle E_\nu \rangle^0, \varepsilon^0) \rightarrow$ "test spectra"
- Determine χ^2 values for all elements in grid containing combinations of $(\alpha, \langle E_{\nu} \rangle, \varepsilon)$
- Minimize χ^2 while profiling over 1 or 2 model parameters

Example χ^2 Map for 12.80 cm² Effective Area

Figures of Merit

- Overall summary "figure of merit": area of 90% regions
 - Quantification on how well DUNE constrains spectral parameters
- Another figure of merit: best-fit parameter fractional difference from truth
- 2D plots of effective area vs. distance; put different figures of merit on z-axis

How well do we have to know the energy resolution?

Energy Resolution: Introduction

- Initiated study to determine how smearing affects forward fitting – what if our resolution assumptions are incorrect?
- Performed sensitivity study for every combination of Gaussian resolution in grid, test spectra
- Note: due to bug, resolutions off by factor of $\sqrt{2}$ (hence the strange resolution values)

2D Contour Area Plot

- X-axis: Grid resolution
- Y-axis: Test spectra resolution
- Areas get larger as resolution increases (expected)
- Areas get smaller in extreme "corners" where test spectra's resolution is at one extreme and the smearing is at the other extreme

Contour Areas for \in vs. α

Sensitivity Regions Example

Notes:

- Here we see superimposed sensitivity regions + best-fit parameters for one test spectra as input into different grids
- We can see both how the areas change, but also how the bias in our predictions change!

ς.

0

Duke UNIVERSITY

0

3.5

7.1

10.6

14.1

2D Fractional Difference Plot

- X-axis: Grid resolution
- Y-axis: Test spectra resolution
- We see how our predictions are biased if we have incorrect assumptions about energy resolution

Fractional difference from truth for \in

0

-0.05

-0.1

-0.15

-0.2

How well do we need to know our energy scale?

Energy Scaling: Introduction

- Goal: quantify how uncertainties in energy spectra affect DUNE's ability to predict SN flux model parameters
- Scale the energy spectra by $\pm 1\%, 5\%, 10\%, 15\%$
- Take every combination of scaled spectra for grid, test spectra

10/31/18

Duke

- Determine the sensitivity regions, best-fit parameters \rightarrow 81 total combinations

Scaled Test Spectra for 0.15GausPNXscn

Contour Areas for α vs. $\langle E_{\mu} \rangle$ -14 15% - 12 10% 5% 10 1% 0% 6 -1% Test Spectrum Scaling -5% -10% -15% -15% 5% 10% 15% -10% -5% -1% 0% 1%

2D Contour Area Plot:

- Color scale indicates the contour area
- Some of the more drastic differences in contour area might be due to grid boundaries – see sensitivity regions in backup

Dukeuniversity

2D Fractional Difference Plot:

- Color scale indicates the fractional difference from truth for the best-fit parameters
- We see that *ε* is most affected by incorrect energy scaling assumptions

How well do we have to know the cross section?

Cross Section: Introduction

- Initiated study to determine how cross section affects forward fitting – what if our cross section model assumptions are incorrect?
- Change cross section among three models:
 - Standard SNOwGLoBES
 - Two MARLEY cross sections:
 - 40Ti
 - (p, n)

Cross Section vs. Energy from Different Sources

2D Contour Area Plot:

- X-axis: cross section used to generate grid
- Y-axis: cross section used to generate test spectra
- No big differences in contour areas • indicates that uncertainties in cross sections has small effect on sensitivity regions

Contour Areas for \in vs. α

2D Fractional Difference Plot:

- X-axis: cross section used to generate grid
- Y-axis: cross section used to generate test spectra

Cross Section Uncertainty: Introduction

- Goal: quantify how uncertainties in the v_e -Ar40 cross section affect DUNE's ability to predict SN flux model parameters
- Scale the cross section by ± 5%, 10%, 15%, 20% → 9 different cross section "models"
 - Take every combination of test spectra

 + grid and determine the sensitivity
 regions, best-fit parameters → 81 total
 combinations

Cross Section with 20% Error vs. Energy

Duke UNIVERSITY

Dukeuniversity

0.3

0.25

0.2

0.15

- 0.1

0

0.05

-0.05

-0.1

-0.15

-0.2

20

15

5

10

Takeaways + Next Steps

- Forward fitting studies help show DUNE's ability to constrain SN flux parameters for various detector parameter assumptions
 - The 2D contour area and fractional difference plots show how DUNE's predictions change for incorrect assumptions
- These studies also quantifies bias in spectral parameter predictions under incorrect assumptions; for example, consider ε :
 - Energy resolution: 21.2% resolution yields -20% to +20% bias on ε
 - Energy scaling: +15% scaling yields -30% to +60% bias on on ε
 - Cross section: 20% uncertainty yields -20% to +30% bias on ε
- Some next steps:
 - Update grids for some studies
 - Cross section shape systematics study
 - Fake supernovae method for all studies

Backup Slides

Forward Fitting: Fake Supernova Sample

- Take ν_e flux parameters from <u>Rosso et al.</u>: $(\alpha, \langle E_{\nu} \rangle, \varepsilon) = (2.5, 9.5, 0.5 \times 10^{53})$
- Use SNOwGLoBES to make smeared energy spectra using this flux + smearing matrix
- Sample randomly from this spectra to generate "fake supernovae" test spectra

10/31/18

Duke

• Many fake supernovae \rightarrow distribution of best-fit parameters based on χ^2 minimization

Backup Slides

ENERGY RESOLUTION STUDY

Contours from the Diagonal

∈ (10⁵³ erg)

1 0.9

0.8

0.6

0.2

Note: these set of contours were produced before I included finer bins

 α

Duke UNIVERSITY

Contours with Best-Fit Points: "Top Row"

Notes:

- These set of contours were produced before I included finer bins
- "Top row" refers to the combinations of grid/test spectra resolutions in the top row of the 2D contour area plot

Best-Fit Values

Notes:

- The diagonal, lower quadrant of [0, 10] (resolution) best-fit back to truth
- If our smearing assumptions are lower than reality: Test spectra with true 20-30% smearing predict lower values of alpha, E0; higher values of luminosity
- If our smearing assumptions are higher than reality: Test spectra with true 0-10% smearing predict higher values of alpha, E0; lower values of luminosity

Fake Supernova Spectra Example

Duke

Notes:

- This example uses a grid with 30% resolution + test spectra with 10% resolution
- 1000 randomly generated supernovae spectra at 10kpc from Earth
- Here we see the bias in DUNE's predictions from an incorrect resolution assumption
- The bias is more significant than I expected...need to look into it more

31

Backup Slides

ENERGY SHIFT STUDY

Introduction

- Goal: determine how shifting the "test" energy spectra changes the forward fitting results
 - Context: direct unfolding dramatically affected by shifting the energy scale
- Initial studies: Gaussian smearing with 15% resolution
 - MARLEY (p, n) cross section; 100% above threshold efficiency; no oscillations
 - Shifted that test spectrum by \pm 0.5, 1, 2 MeV
- Then did forward fit using sensitivity/Asimov method for 10kpc SN:
 - Grid: unshifted 15% resolution
 - Changed the test spectra's shift

Test Spectra + Shifts

Left-ward/Negative Shifts

Right-ward/Positive Shifts

Shifted Test Spectra for 0.15GausPNXscn

Duke UNIVERSITY

10/31/18

Shifted Test Spectra for 0.15GausPNXscn

Sanity check that the shifts are working as expected!

Sensitivity Method: Negative/Left Shift

15% Resolution, No Oscillations 15% Resolution, Shifted -0.5 MeV 15% Resolution, Shifted -1.0 MeV

15% Resolution, Shifted -2.0 MeV

Best-Fit: α = 2.8, $\langle E \rangle$ = 9.8 MeV, \in = 0.5e53 ergs

Best-Fit: $\alpha = 2.2$, $\langle E_{v} \rangle = 9.0$ MeV, $\epsilon = 0.6e53$ ergs Best-Fit: $\alpha = 1.5$, $\langle E \rangle = 7.5$ MeV, $\epsilon = 0.7e53$ ergs

Truth Point

Notes:

- The contours + best-fit points show how the predictions are biased if we incorrectly assume the energy scale
- The contours probably extend beyond the grid boundaries

Sensitivity Method: Positive/Right Shift

Duke

Notes:

- The contours + best-fit points show how the predictions are biased if we incorrectly assume the energy scale
- We also see that the bias is different compared to the other shift!

36

Backup Slides

CROSS SECTION STUDY

Comparing the Test Spectra

Test Spectra: 15% Resolution + Different Cross Sections

Contours from the Diagonal

Contours from Middle Column

2D Best-Fit Parameter Plot: Cross Section Study

- The z-scale is not zero suppressed! This was done on purpose to better differentiate the elements
- We see relatively light tension for α , $\langle E_{\nu} \rangle$; more
- We see biggest tensions in ε between standard SNOwGLoBES cross section, 40-Ti cross section (expected from looking at test spectra)

0.55

0.54

0.53 0.52

0.51

0.5

0.49 0.48

0.47

0.46 0.45

(p, n)

DUKE

Fake Supernovae Spectra: Standard vs. (p,n)

Notes:

- Used grid with standard SNOwGLoBES cross section + test spectra with (p, n) cross section
- We see good agreement between the truth + randomly generated supernovae spectra!
- Indicates that cross section uncertainties have less impact on DUNE's best-fit ability versus resolution

Fake Supernovae Spectra: Standard vs. 40-Ti

Notes:

- Used grid with standard SNOwGLoBES cross section + test spectra with 40-Ti cross section
- We see a bias in the results; not as bad as the smearing studies
- Indicates that cross section uncertainties have less impact on DUNE's best-fit ability versus resolution, but there's still an impact.

Backup Slides

CROSS SECTION UNCERTAINTY STUDY

Cross Section Vs. Energy: 5% Scaling

Cross Section with 5% Error vs. Energy

Cross Section Vs. Energy: 10% Scaling

Cross Section with 10% Error vs. Energy

Cross Section Vs. Energy: 15% Scaling

Cross Section with 15% Error vs. Energy

Comparing the Test Spectra

Negative Scaling

Test Spectra: 15% Resolution + Different Cross Section Uncertanties

Dukeuniversity

10/31/18

Positive Scaling

Test Spectra: 15% Resolution + Different Cross Section Uncertanties

Expect ε to experience the most significant bias

Contours: Upper Left Corner

Contours: Center

Contours: Bottom Right Corner

Contours: Top Row Elements

	Grid -10% Xscn Scaling; Spectra +20% Xscn Scaling
	Grid -5% Xscn Scaling; Spectra +20% Xscn Scaling
	Grid 0% Xscn Scaling; Spectra +20% Xscn Scaling
	Grid +5% Xscn Scaling; Spectra +20% Xscn Scaling
*	Truth Point
¥	Best-Fit: α = $$ 3.0, \langle $\rm E_{_{\rm V}}$ \rangle = 10.2 MeV, \in = $$ 0.6e53 ergs
*	Best-Fit: α = $$ 3.2, \langle ${\rm E}_{_{\rm V}}$ \rangle = 10.5 MeV, ε = $$ 0.6e53 ergs
*	Best-Fit: α = 2.5, \langle E_ $_{_{\rm V}}$ \rangle = 9.5 MeV, \in = 0.6e53 ergs
*	Best-Fit: α = 2.8, \langle E $_{_{\rm V}} \rangle$ = 9.8 MeV, \in = 0.6e53 ergs

Backup Slides

ENERGY SCALING STUDY

Scaled by Energy Fraction: Test Spectra

Scaled Test Spectra for 0.15GausPNXscn

Contours: Upper Left Corner

	15% Resolution, No Shifts
	Grid Shifted -15%, Test Spectra Shifted +10%
	Grid Shifted -15%, Test Spectra Shifted +15%
	Grid Shifted -10%, Test Spectra Shifted +15%
*	Truth Point
¥	Best-Fit: α = 2.5, \langle E $_{_{\rm V}} \rangle$ = 9.5 MeV, \in = 0.5e53 ergs
+	Best-Fit: α = 2.2, \langle E \rangle = 6.9 MeV, \in = 0.8e53 ergs
*	Best-Fit: α = 2.2, \langle E $_{_{\rm V}} \rangle$ = 6.6 MeV, \in = 0.8e53 ergs
*	Best-Fit: α = 2.4, \langle E $_{_{\rm V}} \rangle$ = 7.3 MeV, \in = 0.7e53 ergs

Contours: Lower Right Corner

	15% Resolution, No Shifts
	Grid Shifted +10%, Test Spectra Shifted -15%
	Grid Shifted +15%, Test Spectra Shifted -15%
	Grid Shifted +15%, Test Spectra Shifted -10%
*	Truth Point
¥	Best-Fit: α = 2.5, \langle E _ $_{_{\rm V}}$ \rangle = 9.5 MeV, \in = 0.5e53 ergs
*	Best-Fit: α = $$ 2.7, \langle E_ $_{_{\rm V}}$ \rangle = 12.8 MeV, \in = $$ 0.3e53 ergs
*	Best-Fit: α = $$ 2.4, \langle E $_{_{\rm V}}$ \rangle = 12.8 MeV, \in = $$ 0.3e53 ergs
*	Best-Fit: α = $~$ 2.1, $\langle ~ \textbf{E}_{_{\rm V}} ~ \rangle$ = 11.5 MeV, \in = $~$ 0.4e53 ergs

Duke

Contours: Test Spectrum Shifted +1%

Contours: Test Spectrum Shifted -5%

Duke

Contours: Grid Spectra Shifted +15%

