

UNIVERSITÄT BERN

AEC

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

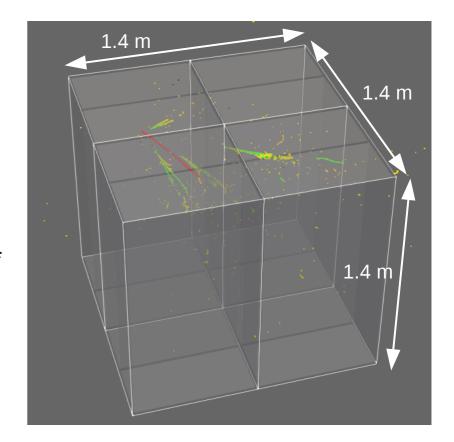
ProtoDUNE-ND: Detector Physics Studies

Bi-Weekly Near Detector Meeting January 23, 2019

Patrick Koller (patrick.koller@lhep.unibe.ch)

The ProtoDUNE-ND Concept

- ArgonCube 2x2 Demonstrator on-axis in NuMI medium energy neutrino beam at Fermilab (MINOS-ND hall)
- Perform detector physics studies that will
 - inform the final DUNE ND design choices
 - help developing reconstruction tools in preparation for DUNE
- Possibility to reconfigure ProtoDUNE-ND in order to accommodate any future prototypes of other DUNE ND subdetectors, and test the DUNE-PRISM concept
- Details in [DUNE-doc-12571-v1]


Stand-alone 2x2 Detector Physics Studies

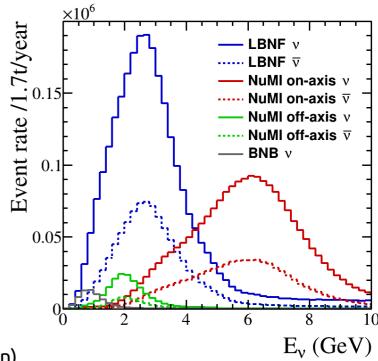
- Bern (February to March 2019):
 - LAr purity maintenance
 - extraction and re-insertion of modules
 - data is triggering on cosmic muons
- In NuMI at Fermilab (2020):
 - demonstrate how well ArgonCube performs in a high multiplicity environment
 - combining light and charge signals
 - fast neutron identification
 - reconstruction in a modular environment
 - desirable to include and test movable cryogenic system (DUNE-PRISM)

Stand-alone 2x2 Simulation

Simulations in order to check feasibility of these studies:

- High statistics GENIE Monte Carlo samples
 - → compare basic properties of neutrino interactions in LBNF and NuMI ME beamlines
- GEANT4 LAr simulation based on ArgonBox* (2x2 geometry is not simulated)
 - → basic understanding of event shape and containment in 2x2

*https://github.com/dadwyer/argon_box

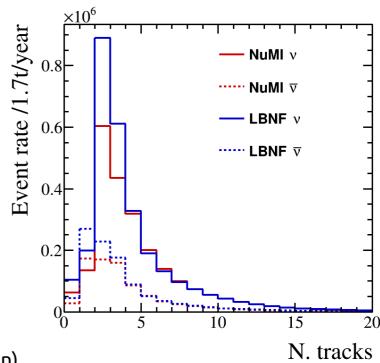

Neutrino Flux Study

Expected yearly interaction rates in the ArgonCube 2x2 Demonstrator

produced with GENIE*:

→ On-axis NuMI medium-energy beam provides a rate close to that of the future LBNF beamline

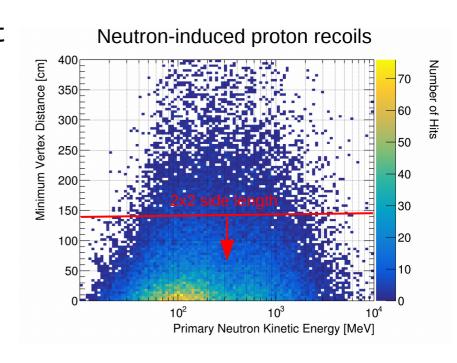
→ MINOS-ND hall is the ideal location for this prototype


*(v2.12.10 with "ValenciaQEBergerSehgalCOHRES" configuration)

NuMI ME vs. LBNF Neutrino Beamline

Expected yearly rates of minimum and highly ionizing particles in the

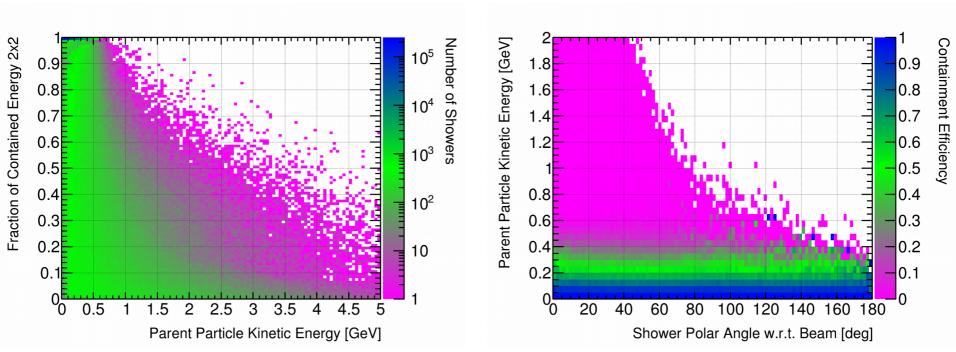
ArgonCube 2x2 Demonstrator produced with GENIE*:


- Track multiplicities are similar
 - → scale of reconstruction problem is similar
- Energy distributions of all particles are slightly broader for the NuMI ME flux
 - → significant number of events with kinematics typical for LBNF

*(v2.12.10 with "ValenciaQEBergerSehgalCOHRES" configuration)

Fast Neutron Identification

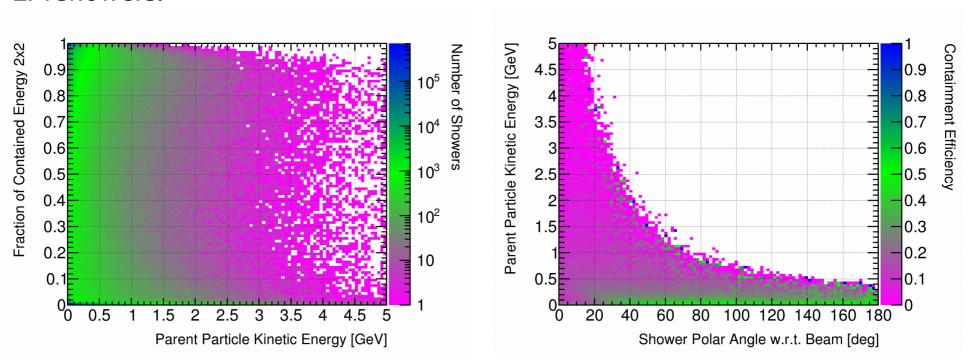
- Fast neutrons may carry away a significant fraction of the neutrino energy
 - Neutrino oscillations are a function of neutrino energy
- Neutron-induced recoils show up as detached energy deposits
- Investigate how well charge and light signals can be combined


Many neutron-induced proton recoils will be contained within the 2x2 Demonstrator.

Track Matching Efficiencies Across Modules

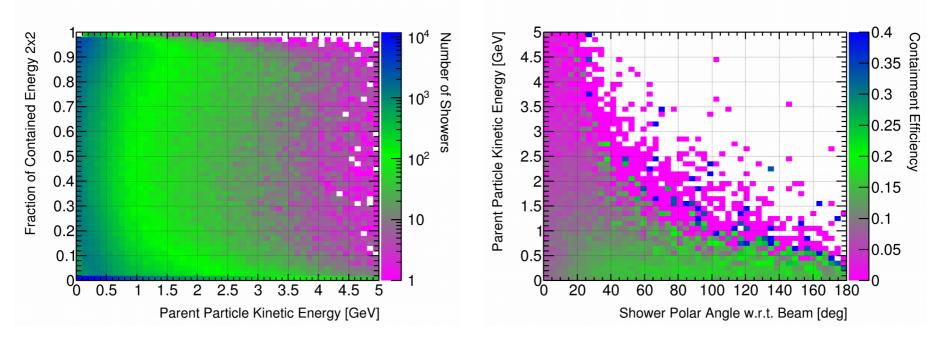
- Reconstruction performance given the module walls will need to be carried out
- More complicated for EM or hadronic showers which cross modules
- Contained samples provide the opportunity to look at the energy response of ArgonCube 2x2 Demonstrator
 - \rightarrow $\pi^0 \rightarrow \gamma \gamma$: if both photons are contained, this provides a measure of EM shower containment

Shower Containment Study: Protons


Proton-induced tracks/showers:

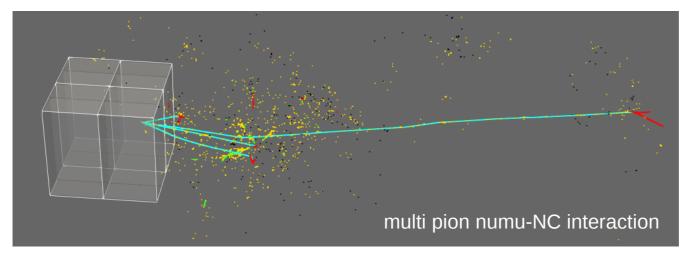
If more than 90% of energy is deposited within the 2x2 active volume, it is classed as contained.

Shower Containment Study: EM Showers


EM showers:

If more than 90% of energy is deposited within the 2x2 active volume, it is classed as contained.

Shower Containment Study: π^0 Showers


Attempt to reconstruct the invariant mass peak of the π^0 from $\pi^0 \to \gamma\gamma$ provides a measurement of the EM shower resolution:

If more than 90% of energy is deposited within the 2x2 active volume, it is classed as contained.

Incorporating other Detector Prototypes

Many events will not be contained in the stand-alone 2x2 Demonstrator:

π[±]: blue μ[±]: purple e⁺: green e-: yellow

Proton: red

Recoiling nuclei: black

- In CC-interactions, the muon will be uncontained in most of the events
- Additional and extended detector physics studies would be possible, if additional subdetector prototypes are introduced in ProtoDUNE-ND (e.g. 3DST, HPgTPC)