

v_{τ} containment studies

Jeremy Hewes v_{τ} and high-energy beam tune meeting 1st November 2018

Introduction

- Looking at v_{τ} interactions using a full simulation and reconstruction chain:
 - v events simulated using GENIE.
 - GEANT4 propagates MC particles through detector.
 - Detector simulation to convert these particles into signals on wires.
 - Reconstruction chain:
 - Wire processing.
 - Hit finding & clustering.
 - Object reconstruction (tracks, showers).
 - Neutrino energy reconstruction.

Motivation

- Studies by Saul Monsalve, Leigh Whitehead, Alex Radovic et al. show great promise for CVN (convolutional visual network).
- Given its success at identifying v_e and v_μ events, how effective is CVN at identifying v_τ interactions?
- Their model performed poorly on v_{τ} events due to a severe lack of MC statistics on which to train the network.
- Produced an enriched v_τ MC sample to add to their dataset, but this introduced new problems.
 - Now at higher energies, v_τ events overrepresented in training sample.
 - Network classifies any high-energy neutrino interaction as a v_{τ} .

Training samples

- Produced high-stats (~800k total) simulation samples for six neutrino types (v_e, v_µ, v_τ, v̄_e, v̄_µ, v̄_τ) with an event rate approximately flat in true neutrino energy between 3.5 and 80 GeV.
- Trained a ResNet network, but accuracy for v_{τ} events significantly worse than other neutrino flavours.
- The small 1x2x2 workspace geometry used meant the majority of v_{τ} events were uncontained.

 v_{τ} containment studies – J. Hewes – DUNE v_{τ} and high energy beam meeting

Containment studies

- Examining how well-contained events are in each available geometry before beginning another round of high-stats MC production.
- Clearly workspace is too small, but 1x2x6 and 10kt are both candidates.
- Use new lower-energy warped flux (150 MeV - 15 GeV).
- Produced low-stats (~1000) samples for v_e , v_μ , v_τ in both detector geometries.
- Flux warping to approximate event rate flat in energy is less accurate for v_τs, likely because of lower cross-sections at lower energies.
 - Should produce separate warped flux for v_{τ} events to correct for this.

Containment definition

- Simulation provides "MC reconstructed" objects based on simulated ionization electrons.
 - Construct "MC showers" and "MC tracks" for particles which are above thresholds and visible in the detector.
 - A version of MC truth information which describes what we see in the detector.
- Require all MC reco objects have a start and end point inside the fiducial volume.
- Strict definition of containment every particle visible in the detector must be completely contained.

ve containment

v_{μ} containment

v_{τ} containment

Atmospheric containment

- We have an MC sample of beam neutrinos with an event rate ~flat in energy. What can this tell us about atmospheric neutrinos?
- Downward-going neutrinos only have ~12m of detector in which to stop.
- Define a 12x12x12 subset of the detector, and see what % of events with a vertex inside this volume are contained within it.

Containment

- Containment in 12x12x12 volume generally very poor.
- v_{μ} containment in CDR is ~75%, but this only considers the muon containment, whereas we consider *everything*.

Table 4.3: Atmospheric neutrino event rates including oscillations in 350 kt \cdot year with a LArTPC, fully or partially contained in the detector fiducial volume.

Sample	Event Rate
fully contained electron-like sample	14,053
fully contained muon-like sample	20,853
partially contained muon-like sample	6,871

 Would be interesting to do this study for simulated atmospherics in full detector.

Angular resolution

- First-pass look at angular resolution:
 - Calculate $\cos \theta_v$ between true neutrino direction and beam direction.
 - Calculate $\cos \theta_{vis}$ between directionality of visible system and beam direction.
 - Direction of visible system is calculated from the directions of all MC reco particles, weighted by momentum.
 - Take the difference between these two to calculate angular resolution.
 - Look at the mean and spread in these as a function of true neutrino energy.

Angular resolution — all events

Angular resolution — all v_e events

Angular resolution — all v_{μ} events

Angular resolution — all v_{τ} events

Conclusions

- Containment is an issue even for the larger "reduced" detector 1x2x6 geometry.
 - Gives us motivation to produce MC in the full DUNE 10kt geometry for our next round.
- We are able to:
 - Produce migration matrices for true v energy vs calorimetric energy for contained events.
 - Make statements on what proportion of interactions we expect to be contained.
 - Any other useful inputs for sensitivity studies?