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CASE OF STUDY

We want to know if we can amplify 12 SiPM in paralell
(active ganging) with just one output channel.
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We simulate a Charge amplifier transimpedance model and a Charge integrator model



Three stages of the circuit for 48 SiPM:

12 SiPM

Design scheme
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Two preamps models studied
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« This is afirst order low pass filter « This is asecond order band pass filter
« Rf and Cf establish the bandwith « Cf and Cs establish the bandwith and
and frequency cut point frequency cut point

« Eliminates high frequency noise  Eliminates low and high frequency noise
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Cut of 20 dB per decade. e Cut of 40dB per decade
Range of frequency form zero to first pole * Range of frecuency from the first to
(with low frequency noise) second pole.
Direct coupling from the SiPM to the filter. * The SiPM is connected to the

decoupling capacitor.



Simulation outline

Charge '
Signal SiPM Integrator or o‘ m
+ transimped. +

Dark Noise
Noise generator

Noise

Both models are running using Hamamatsu’s parameters for single photon analysis
(thanks to Vishnu for sending the detector parameters!)
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Results for the transimpedance

Single photon analog signal - Transimpedance

— Maoisy LPF output
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Single photon analog signal - Transimpedance
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Voltaje [mV ]

Results for charge integrator
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Single photon analog signal

Transimpedance Amplifier
Charge Amplifier

Tiempo [ i5 ]

We cannot see a big diference between them in the response. The best values of SNR
the we obtained are about 8 dB and a 1 us of settling time in both topologies.



Voltage [mV ]

Dark noise for 48 SIPM

Single photon analog signal and Dark Noise

— Noisy LPF output
wwsss Dark Noise
—— Noisless LPF output
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We see that we should no worried about the dark noise 10
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How many samples per second?

ot Single photon signal at 5 MSPS - 12 BIT ADC - 2 Vpp

Naisy LPF autput
= Noiseless LPF output

LPF output
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Single photon signal at 20 MSPS - 12 BIT ADC -2 Vpp
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Time [ 15 ]

We think that we can do well with a 20 MSPS
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ADC

Single photon analog signal - Transimpedance
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How many bits for dynamic range?

ADC
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Results for transimpedance preamp
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. 10* Single photon signal at 20 MSPS - 16 BIT ADC -2 Vpp
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COLD ELECTRONICS TESTS

Two-Supercell ARAPUCA PD Concept

-1 or 2 Supercells/module

-48 MPPCs/Supercell

4 boards with 12 actively ganged hammamatsu SiPM

-Nearly 50% more collection area (per Supercell)
from ProtoDUNE

-Single or double sided

-1 or 2-region segmentation (~ 10 X 50 cm area)

Signal routing in PCB
Along sides of module

-Far-end readout (connector on far APA tube)
-Requires new 136 X 25mm APA slot (agreed to)
-Adaptable to X-ARAPUCA and both bar concepts Active Ganging PCB

Inside far APA tube
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For transimpedance R1, R2, R3 & R10left open; and C4, C5, C6 & C11 are shorted
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Current scientific requierements

[tem Type System |Quantity/Parameter Requirement Goal |Explanation Comments Motes
The minimum requirements are
based on determining TO for
nucleon decay events, and the
goals are based on a high-level
. i ) ) estimate of the needs for
Minimal requirement is for light- )
) . i o B} i supernova physics. We are
yield to be sufficient for measuring |Minimal requirement is based on )
B, . . . . currently in the process of
event time (and total intensity) of events occuring near the cathode, .
. . . > 5 . . B determining the detector
1 Scientific SP-PD light-yield =05 pe/MeV events with visible energy above 200 (for which the produced photons o
pe/MeV ) i specifications needed for a
MeV. Goal is to make possible a need to travel furthest to reach the _
set of supernova physics goals,
1% energy measurement for events (photon detectors. )
_ . some of which may lead to new
with a visible energy of 10 MeV. .
requirements for the TDR,
depending on the cutcome of
the simulation studies and the
measurements at protoDUNE
and ICEBERG.
Based on the minimal energy ) ) i )
deposition (10 MeV), spatial Time resolution of 1 us is required
CEEEEER separat'lnn If:l m) anJl:I tFnIzr'n oral to have position resolution along Goal value is readily
2 Scientific SP-PD  |time rescluticon <1 s < 100 ns . : ! . the drift direction of about 1 mm. obtainable from a

separation (1 ms) for which one
wants to assign a unique event
time.

This is to match the resoclution due
to the wire spacing.

technological perspective.
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Conclusions
. We show that we have a very powerful tool that can be used in the design of the
electronics needed.

. We showed that is possible to gang 48 SiPM and distinguish single photon signals with less
than 1 us width (recovery time included).

. For single photons there is no significant difference between both models in duration of
the pulse and S/N ratio.

. The S/N ratio obtained is about 8 dB, with all noise effects included (thermal, DN).
. The optimal sampling rate obtained is >~ 20 MSPS.
. The design of the board for the ICEBERG test stand is ready and in process of fabrication. It

includes both designs in the same board, that can be easily exchanged.
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mean signal
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* Rise time: 125 ns
« Fall time: 350 ns

*« Recovery time: O(2us) — what's shown on the right is as wide a window

as the FEB allows




DARKINOISE
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Dark Count Rate
e b Thwb2 L

m Vop Vbr Vovr der(Hz) der(Hz) PDE
[ 165 33 31.5 1.5 1 1
34 31.5 2.5 12.9 9.2 45%
35 31.5 3.5 18.2 15.1
| 180 36 315 4.5 47.9 34.5
]
ssp
m Vop Vbr Vovr
| 220] 44 42 :
p 12 For Hommamatsu SiPM
| 230] 46 42
47 42
| 240 48 42
L ]
E
M Vop Vbr Vovr
| 220 a4 42.8
45 42.8 Overvoltage value used in
| 230] 46 42.8 3.2 6.4 43% imulati
47 42.8 4.2 71 our simulations
| 240] 48 42.8 5.2 9.2

Table from Kurt Francis taken from Photosensor WG Meeting 10/23/2018 slide 22 1



Voltaje [mV]
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DARK NOISE FOR 48 SiPMs

Senal ruidosa
Dark Noise
Senal

600 800 1000 1200 1400 1600 1800
Sefal de salida con R' =100 k2, C’ =60pF, Ns=12yT=80K
25
— Senal ruidosa
Dark Noise
2 —— Sefial

Voltaje [mV]

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Tiempo [ us ]

2000

22



