Cryostat Penetration

Manhong Zhao on behalf of CE Team

Cold Electronics Mechanical Review Feb 11th, 2019

Requirements

The cryostat penetration shall meet the following requirements:

- Provide a seal of the cryostat with a maximum leak of 1.0E-9 std.cc/sec He @ 1atm diff.
- Provide a separation of 5 mm between the cryostat crossing tube and the crossing tube of the cryostat penetration
- The cross-shaped spool piece and CE crossing tube shall fit on the cryostat crossing tube flange.
- Provide enough space to route the CE cables and PDS cables for 2 APAs.
- The cross-shaped spool piece shall have sufficient strength to support the weight of two CE flange/crates and one PDS flange.
- The CE crossing tube shall have sufficient strength to support the weight of cables inside the cryostat penetration.

Layout of the Cryostat Roof

Overview of Cryostat Penetration CE flanges stay above cryostat beam 30° Cross-shaped spool piece installed in 30°

Anatomy of Cryostat Penetration

CE Crossing Tube (CECT)

CECT Installation

CECT Installation

Good concentricity achieved by adjusting the alignment screws to tilt the CECT for better alignment.

2/11/2019

Cross-Shaped Spool Piece

Crossing Tube Cable Support System

Gas Flow Path in the Cryostat Penetration

CE Flange Design

CE Flange FEA

Cryostat design pressure range: 950 – 1350 mbar

5 psi from inside cryostat: ~13μm max deflection Max stress: ~ 2000 psi

1 psi from outside cryostat: ~12μm

Max stress: ~ 900 psi

13

PD Flange Design

- Joint effort with ANL PDS group
- Up to 20 Hirose LF10WBR-12 connectors (through hole)
- PCB + double layer stiffening plate sandwich sealed against the 14" CF flange with indium wire
- Cable strain relief bars on the argon side
- Heaters and venting port

PD Flange FEA

5 psi from inside cryostat: ~2.5μm max deflection

1 psi from outside cryostat: $^{\sim}0.2\mu m$ displacement

Tests Performed on the CE Signal Flanges

Leak tests

Vacuum leak rate at or below ~2e-9 mbar.l/s

Pressure tests

- 120 psi hydrostatic test on an SBND flange without surface mount connectors @ BNL for LARIAT VST. (SBN docdb 6873)
- 80 psi pneumatic test of a ProtoDUNE CE flange, a PD flange, and a Tee @ FNAL for ICEBERG

Units in use

- 6 @ ProtoDUNE, one on the cold box
- 1 @ LARIAT VST (SBND version)
- 1 @ ICEBERG (DUNE version)

Finite Element Analysis of CECT

Two loading scenarios of CETC are simulated:

The CECT supports ~50 Kg cable weight.

50 Kgf lateral force during installation and cabling.

Stainless Steel 304		
Density (kg/m³)	8000	
Modulus of Elasticity (GPa)	193	
Poisson Ratio	0.29	
Yield Strength (MPa)	215	

1) 50 Kg cable weight

2) 50 Kg cable weight and 50 Kgf lateral force.

Stress and Deformation of CECT (1)

Loading scenario 1

50 Kg cable weight

Loading Scenario 1		
Max deformation (mm)	0.006	
Max Equivalent Stress (MPa)	7.9	
Safety Factor	27.2	

Stress and Deformation of CECT (2)

Loading scenario 2

50 Kg cable weight and 50 Kgf lateral force.

Loading Scenario 2		
Max deformation (mm)	0.4	
Max Equivalent Stress (MPa)	121	
Safety Factor	1.77	

Finite Element Analysis of Cross-Shaped Spool Piece

Four loading scenarios in total of cross tube are simulated

- 1) 90 Kg of flange weight,
- 2) 90 Kg of flange weight and 50 Kgf lateral force along Y direction on CE port,
- 3) 90 Kg of flange weight and 50 Kgf lateral force along Y direction on PDS port,
- 4) 90 Kg of flange weight and 50 Kgf lateral force along X direction on PDS port.

Stress and Deformation of Cross-Shaped Spool Piece (1)

Loading scenario 1: 90 Kg of flange weight

	Max deformation (mm)	Max Equivalent Stress (MPa)	Safety Factor
Loading Scenario 1	0.02	3.9	55.1

2/11/2019

Stress and Deformation of Cross-Shaped Spool Piece (2)

Loading scenario 2:

90 Kg of flange weight and 50 Kgf lateral force along Y direction on CE port

	Max deformation (mm)	Max Equivalent Stress (MPa)	Safety Factor
Loading Scenario 2	0.12	10.1	21.3

Stress and Deformation of Cross-Shaped Spool Piece (3)

Loading scenario 3:

90 Kg of flange weight and 50 Kgf lateral force along Y direction on PDS port

	Max deformation (mm)	Max Equivalent Stress (MPa)	Safety Factor
Loading Scenario 3	0.13	9.2	23.4

Stress and Deformation of Cross-Shaped Spool Piece (4)

Loading scenario 4:

90 Kg of flange weight and 50 Kgf lateral force along X direction on PDS port

	Max deformation (mm)	Max Equivalent Stress (MPa)	Safety Factor
Loading Scenario 4	0.12	10.6	20.3

Thank You!

