Fermilab **BENERGY** Office of Science

121.02.04 - 650 MHz CryoModules

SRF and Cryogenics Breakout Session

- Saravan K. Chandrasekaran PIP-II IPR
- 4-6 December 2018

In partnership with: India/DAE Italy/INFN UK/STFC France/CEA/Irfu, CNRS/IN2P3

Outline

- Scope/Deliverables
 - (Including In-Kind Contributions)
- Requirements
- Interfaces
- Preliminary Design, Maturity
- Technical Progress to Date
- ESH&Q
- Risks and Mitigations
- Summary

About Me:

- L3 Manager for 650 MHz Cryomodules (CM)
 - Responsible for 650 MHz CM
 - Sub-Project Manager (SPM) for cavities and CM with Partners
- Experiences
 - Subcontracting Officer's Technical Representative (SOTR) for LCLS-II magnetic shielding
 - Lead for magnetic hygiene & demagnetization for LCLS-II
 - Led efforts across Fermilab, JLab, SLAC
 - Lead engineer for SRF thermal treatment facilities
 - FRIB Research Associate for SRF & magnetic shielding
 - Led magnetic shielding design for FRIB QWR cryomodules
 - Doctorate in Mechanical Engineering on Niobium for SRF

Charge #2

Scope and Deliverables

IS LE	BT RFQ N	IEBT β=0.11	. β=0.22 β	β =0.47	β= 0.61	β= 0.92	
د الم	RT C 162 MeV 0.03	2.5 MHz -10.3 MeV	325 M 10.3-18	MHz 5 MeV	65	50 MHz 800 MeV	
Cryomodule	Number (Prototype + installed)	Cavity Number	Magnet Number	Test	ing		Note
LB650	1+11	3	0	Partial Test at Partner lab, Full Test at FNAL		Partial Test at Integrat Partner lab, Full Test at FNAL	
HB650	1+4	6	0	Test	at FNAL		Integrated Design

• CW operation & 2 mA beam current

- Partnerships:
 - Indian Institutions Fermilab Collaboration (IIFC)
 - Bhabha Atomic Research Center (BARC)
 - Raja Ramanna Centre for Advanced Technology (RRCAT)
 - Variable Energy Cyclotron Center (VECC)

- France: Commissariat à l'énergie atomique, Saclay (CEA)
- Italy: Istituto Nazionale di Fisica Nucleare (INFN)
- UK: Science & Technology Facilities Council, Daresbury (STFC)

Item	Quantities installed	DOE	Partners R&D & Construction	ltem	Quantities installed	DOE	Partners R&D & Constructio
LB650 proto CM	1			HB650 proto CM	1		
Cryomodule	1		1	Cryomodule	1	1	
Jacketed Cavities	3	2	4*	Jacketed Cavities	6	7	4
Couplers	3		6	Couplers	6	8	4
Tuners	3		5	Tuners	6	8	4
LB650 CM1-11	11			HB650 CM1-4	4		
Cryomodule	11		11	Cryomodule	4		4
Jacketed Cavities	33		43	Jacketed Cavities	24		32 + 6
Couplers	33		40	Couplers	24		42 + 6
Tuners	33		38	Tuners	24		32 + 6

- Low beta 650 MHz (LB650) 1 + 11 CM
 - Fermilab scope:
 - Support partner design of cavities, couplers, & cryomodules
 - Fabricate & validate prototype dressed cavities
 - Support partner fabrication & validation of cryomodules & components
 - Testing all cryomodules
 - Partner scope:
 - Design, fabrication, testing of prototype & production CM & components
 - Transportation of CM to Fermilab

Joint design program being established

- High beta 650 MHz (HB650) 1 + 4 CM
 - Fermilab scope:
 - Design of cavities, couplers, tuners, cryomodules
 - Fabrication & validation of prototype CM, including components
 - Transportation testing & validation of prototype CM to UK and back
 - Fabrication of a production CM
 - Support partner specific design & fabrication
 - Testing all cryomodules
 - Partner scope:
 - Support Fermilab design
 - Fabrication of prototype components for Partner process validation
 - Fabrication of production cryomodules, including components
 - Design & fabrication of transportation frame & scheme

Joint design program being established

System Requirements

• 650 MHz Cryomodules

	Units	LB650	HB650
Energy for section	MeV	185 to 500	500 to 800
β _g		0.61	0.92
Cavities per cryomodule		3	6
Cryomodule flange-to-flange length	m	4.32	9.92
2 K heat load	W	< 78	< 175
5 K heat load	W	< 24	< 61
30 – 50 K heat load	W	< 68	< 160
Environmental magnetic field	mG	≤ 5	≤ 5
Transverse cavity alignment error, RMS	mm	0.5	0.5
Angular cavity alignment error, RMS	mrad	1	1

System Requirements

• 650 MHz Cavities, Couplers, & Tuners

	Units	LB650	HB650
β _g		0.61	0.92
Operating energy gain per cavity	MV	11.9	19.9
Unloaded cavity quality factor		2.15×10 ¹⁰	3×10 ¹⁰
Cavity operating temperature	К	2.0	2.0
2 K heat load per cavity & coupler	W	< 21.1	< 23.9
Cavity longitudinal stiffness	kN/mm	< 5	< 5
Sensitivity to LHe pressure fluctuations	Hz/mbar	< 25	< 25
Lorentz Force Detuning coefficient	Hz/(MV/m) ²	< 1.4	< 1.0
Coupler testing power	kW	35	50

Charge #2

Interfaces

11

- Interfaces well defined
 - Revision controlled in Teamcenter

- HB650 Cavities
 - $-\beta_{q} = 0.90$ cavity dressing PDR to be held in Dec 2018
 - Gate for dressing these prototype cavities
 - $-\beta_g = 0.92$ cavity dressing PDR to be held in Dec 2018
 - Gate for Fermilab procurement of bare cavities + Partner dressing of prototype cavities
- Couplers
 - Prototypes procured, and to be tested in early 2019
 - FDR for couplers to be held in 2019
 - LB650 and HB650 to be identical
- Tuners
 - Prototype tuner received and bench tested
 - FDR for tuners to be held in 2019

Proton Improvement Pla

- LB650 5-cell cavities
 - RF design frozen
 - Partner developed mechanical design version 1 being prototyped by the partner with 2 cavity order
 - Fermilab to receive and process cavities in 2019
 - Mechanical design optimization ongoing at second partner lab
 - Prototype cavities to be fabricated by Partner

- Cryomodule preliminary design ongoing
- String
 - Cavities, couplers, tuners prototype stage
- Thermal & magnetic shield piping, vacuum vessel
 - Preliminary design & analysis stage
- Cryomodule
 - Preliminary design & analysis stage

Cryomodule PDR in FY19

Charge #2

Environmental average magnetic field specification: ≤5 mG

Local cold shield

3D CAD model

- Magnetic design completed
 1 layer local shield + 1 layer global shield
- Mechanical model design ongoing
- Shield prototype to be procured
- Validation in horizontal test

Global warm shield

No shield fields on cavities >250 mG v 167

Charge #2

240

Final results with fields on cavities <5 mG avg

Fermilab

Progress to date – HB650 Cavities

- EP + 120 C

- 1-cell
 - Cavity surface treatment recipe optimization for high-Q
 - Cavities used includes partner cavity
 - Multiple recipes being examined
- EP + 75 C + 120 C N doping Magnetic field sensitivity being studied g 10¹⁰

Progress to date – HB650 Cavities

• 5-cells ($\beta_q = 0.90$) Cavity qualification ongoing • Driven by 1-cell recipe optimization First cavity to be dressed • Q₀ ≈ 4 × 10¹⁰ at 20 MV/m 10¹⁰ PIP-II spec 5

Cavity dressing mock-up

First cavity being prepared for dressing

Progress to date – HB650 Cavities

- 5-cells ($\beta_g = 0.92$)
 - Partner fabrication of 4 cavities ongoing
 - Fermilab cavity Nb procurement for 3 cavities ongoing
 - Cavities to be ordered in the near future

Progress to date – LB650 Cavities

- 1-cell
 - Partner procuring 1-cell cavities for:
 - Validation of RF design
 - To optimize surface processing recipe
 - Activity in parallel for 5-cell procurement
 - 1-cell cavities to be delivered before 5-cell cavities

LB650 prototype fabrication in process at vendor

First fabricated 1-cell cavity shown

Progress to date – Couplers

- Prototype couplers procured
 - 2 conventional copper coated + 2 novel EM shielded design
 - No bellows in cold end of coupler (beam vacuum end)

- Particulate testing performed
 0 particulates after blowing
- Coupler test/conditioning stand procurement ongoing
- Partner led design optimization to begin

Progress to date – Tuners

- Prototype tuner bench tested & warm validated
 - Tuner machined by Michigan State University
- Range >300 kHz with 1 Hz/step
- Stiffness estimated to be 41 kN/mm
 - Cavity stiffness requirement: 5 kN/mm
- Prototype tuner fabrication by partner begun

$$K_t = K_c \left(\frac{N_{\rm D}}{N_M - N_D} \right)$$

K_T=5 kN/mm * [18/(20.2-18)]= 41kN/mm

12/04/2018

Progress to date – Cryomodule Design

- Integrated engineering design team formed
 - Fermilab is lead for HB650 design, & Partner is lead for LB650
 - Partners participate in sub-system design
 - Similar design approach for HB & LB
 - HB650 cryomodule design to mature first
 - LB650 cryomodule design shall follow
 - Tooling to be designed for cross functionality between HB & LB

Progress to date – Cryomodule Transport

- First iteration of transportation analysis completed
 - Analysis model built to represent whole cryomodule

Progress to date – Cryomodule Transport

- First iteration of transportation analysis completed
 - Components for improvement identified

		Max Equivalent Stress				Mode	Frequency [Hz]
		Axial 5G,	Transvers 1.5G,	Vertical	Tensile Strength,	1	11.317
		MPa	Мра	3G, Mpa	Mpa	2	12.934
Vessel	ASTM A516 Steel Gr70	144	182	144	260	3	18.229
Thermal Shield	Aluminum 1100	38	30	45	150	4	20.626
2Phase Pipe	316SS	184	108	163	210	5	21,186
Strong Back	Aluminum 6061 T6	27	23	13	255	6	21 305
					255 (crosswise)	7	22.505
Support Post	G-11	29	34	12	296(lengthwise)	,	22.045
					151(shear strength)	°	25,420
Adjust Support	ASTM A193 B7/ 18-8 SS	140	128	49	210	9	24.907

ESH

- Safety is the highest priority
- All designs to adhere to Fermilab Environment, Safety and Health Manual (FESHM)
- Cryomodules shall adhere to ASME or PED
- Safety by design is being practiced

Quality Management

- All components and processes covered by QC plans
 - Travelers and operating procedures are being developed
 - Incoming inspections and acceptance testing are planned for all critical components and sub-assemblies
 - Procurement specifications are written for each major component purchase and vendor visits are planned for Fermilab as well as for major Partner procurements
 - Discrepancy Reports and disposition are to be managed in Vector
- Partners shall have same or equivalent QC plans
- Lessons learned from other projects and within PIP-II to be monitored and implemented
 - e.g., Coupler warm ends to be removed for transportation

Risk Management

Charge #2,7

Risk Rank	Risk ID	Title	Impact		
	RT-121-02-001	650 Cryomodule is damaged during transportation	Damaged cryomodules will need to be repaired, jeopardizing testing, linac installation & commissioning		
High	RT-121-02-003-B	Underestimated resources for design optimization of HB650 CM (1)	A repair strategy will have to be made, and module may have to be disassembled, impacting HB650 production, and LB650 design and production		

- Planned mitigation
 - HB650 and LB650 to have prototype cryomodules
 - These modules are to undergo transportation testing, including overseas shipment
 - HB650 prototype cryomodule to begin assembly in 2020, allowing for testing and validating cryomodule

Summary

- Cavity prototypes to be dressed in near future
- Cavity surface preparation recipe optimization is in progress
- Coupler prototypes are fabricated & to be validated
- Tuner prototype was fabricated & validated on bench tests
- Integrated cavity, coupler, tuner, magnetic shield designs are to be validated in horizontal testing
- Cryomodule design is at preliminary stage
 - Integrated engineering design team is being established
 - Transportation analysis is embedded in the design program
- Risks are understood
- ESH and QA plans are being developed
- Thank you for your attention

We are on track for CD-2/3a and look forward to your feedback

