

SRF and Cryogenics (121.02)

Genfa Wu PIP-II Independent Project Review 4-6 December 2018

In partnership with: India/DAE Italy/INFN UK/STFC France/CEA/Irfu, CNRS/IN2P3

Outline

- Introduction
- Cryomodule Development Plan and Schedule
- In-kind Contribution and Partner Lab Management
- Technical Risks and Challenges
- Lessons Learned
- Summary

Scope and Deliverables

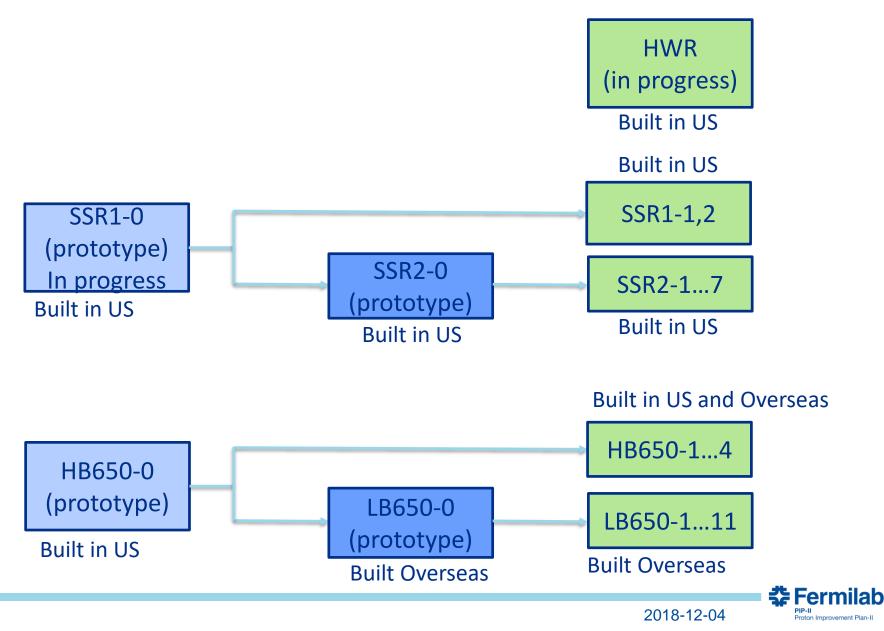
PIP-II

Proton Improvement Plan-II

SRF					
Cryomodule	Number (Prototype + installed)	Cavity Number	Magnet Number	Testing	Note
HWR	1	8	8	Tested at FNAL	ANL Led Design
SSR1	1+2	8	4	Tested at FNAL	FNAL Led Design
SSR2	1+7	5	3	Tested at FNAL	Integrated Design
LB650	1+11	3	0	Partial Test at Partner lab, Full Test at FNAL	Integrated Design
HB650	1+4	6	0	Test at FNAL Shipping	Integrated Design from overseas
Total	4+25	116	37		

CRYO

- Cryoplant 2.2 kW 2K capacity
- Cryogenic distribution to support 2K CW operation and appropriate cool down of Linac
 Fermilab

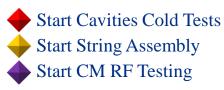


Outline

- Introduction
- Cryomodule Development Plan and Schedule
- In-kind Contribution and Partner Lab Management
- Technical Risks and Challenges
- Lessons Learned
- Summary

Cryomodule Development Path

Cryomodule Schedule


Charge #5

27 November 2018 – Critical path on SSR2

Fiscal year

WBS Code	WBS Name	FY2019	FY2020	FY2021	FY2022	FY2023	FY2024	FY2025	FY2026	FY2027
		FFF	FFFF	FFFF	FFFF	F F F F	F F F F	FFFF	FFF	FFFF
📄 🖻 📥 121-IPR.02.03.02	SRFs - SSRs - Single Spoke Resonator 1 (R1)				<mark>SSR1</mark>					
SSR1 = 121-IPR.02.03.02.01	SRFs - SSRs - R1 - 1st Prototype CryoModule (1stPCM)			Prototy	F					
121-IPR.02.03.02.02	SRFs - SSRs - R1 - Design Optimization for SSR1 Production			Desig	n Opti	mizatio	on			
🗈 🖶 121-IPR.02.03.02.03	SRFs - SSRs - R1 - 1st to 2nd Production CryoModules (1st-2ndCM)								Produ	ction
🛛 🕒 🗖 121-IPR.02.03.03	SRFs - SSRs - Single Spoke Resonator 2 (R2)				SSR2		Ductot			
SSR2 🖬 📲 121-IPR.02.03.03.01	SRFs - SSRs - R2 - 1st Prototype Cryomodule (1stPCM)						Protot.			•
🖲 🖶 121-IPR.02.03.03.02	SRFs - SSRs - R2 - Design Optimization for SSR2 Production						Desi	gn Op		
📃 🗄 🖥 121-IPR.02.03.03.03	SRFs - SSRs - R2 - 1st to 7th Production Cryomodules (1st-7thCM)					i i i		<u>i</u> i i	Proc	luction
🖹 🖹 🖶 121-IPR.02.04.02	SRFs - 650MHz - Low Beta (LB)				LB650				•	
LB650 121-IPR.02.04.02.01	SRFs - 650MHz - LB - 1st Prototype CryoModule (1stPCM)						Proto	TA 1 1 1		
121-IPR.02.04.02.02	SRFs - 650MHz - LB - Design Optimization for LB650 Production						Des	ign O	ptimiz	ation
🖻 🖶 121-IPR.02.04.02.03	SRFs - 650MHz - LB - 1st to 11th Production CryoModules (1st-11thCM)								Proc	luction
🖻 🛑 121-IPR.02.04.03	SRFs - 650MHz - High Beta (HB)				HB65(7	
HB650 121-IPR.02.04.03.01	SRFs - 650MHz - HB - 1st Prototype CryoModule (1stPCM)					Prototy	4 1 1 1			
🗉 🖶 121-IPR.02.04.03.02	SRFs - 650MHz - HB - Design Optimization for HB650 Production					Desigr	ı Optir	nizatic	on	
🖻 🖶 121-IPR.02.04.03.03	SRFs - 650MHz - HB - 1st to 4th Production CryoModules (1st-4thCM)			1 1					Proc	luction

Legend

T5 Milestones – Half Wave Resonators and Single Spoke Resonators

L3	T5 Milestone	FY2018	FY2019	FY2020	FY2021 FY2022 F	FY2023	FY2024 FY2025	FY2026	FY2027
	HWR Cryomodule Delivered to Fermilab		•						
	Proto SSR1 RF Tested in PIP2IT with 1 Prototype SSR1 Amplifier	1)	•		SSR2				
	HWR Cryomodule RF Tested in PIP2IT	1	1	L 1	Prototype	į.		أسيري	
	Proto SSR1 RF Tested in PIP2IT, Ready for Beam Commissioning	1			rototype			45	
Prototype SSR2	1st In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler		γ I	1 1			Charge	#5	
	2nd In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1 1					6.60		
Prototype SSR2	3rd In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1		1 1				1	
Prototype SSR2	4th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1							
Prototype SSR2	1st Proto FNAL Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1							
Prototype SSR2	1st In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1	1						
	2nd In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1	1 I						
Prototype SSR2	SSR2 Proto Cryomodule RF Tested in PIP2IT Ready-for-Installation Milestone	1							
Production SSR1	1st In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler					i.			
	2nd In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1	η Π			•	SSR2		
Production SSR1	3rd In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1							
Production SSR1	4th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1		1 1			Production		I
Production SSR2	In-Kind Batch 1 (1-8) Dressed Cavities Qualified	1 i		1 1					1
Production SSR1	5th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1		1 1					
Production SSR1	6th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1 Ì		<u> </u>		- 1			
Production SSR1	7th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1			SSR	(1]		ļ	I
Production SSR2	In-Kind Batch 2 (9-16) Dressed Cavities Qualified		SSR	1	Dro	oductio	n		
Production SSR1	8th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1			PIC	June	,		
Production SSR2	In-Kind Batch 1 (1-8) Dressed Cavities Ready for String (after Batch 1 Re-Cold Tests)	1	Pro	totype			•		
Production SSR1	9th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1 i					•		
Production SSR1	10th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1					•		I
Production SSR1	11th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1					•		I
Production SSR2	In-Kind Batch 3 (17-24) Dressed Cavities Qualified	1					•		I
Production SSR1	12th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1					•		I
Production SSR2	In-Kind Batch 2 (9-16) Dressed Cavities Ready for String (after Batch 2 Re-Cold Tests)	1					•		I
Production SSR1	13th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1					•		I
Production SSR1	14th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1					•		I
Production SSR2	In-Kind Batch 4 (25-32) Dressed Cavities Qualified	1					•		I
Production SSR1	15th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1					•		I
Production SSR2	In-Kind Batch 1 (1-5) Dressed Cavities Qualified	1					•		I
Production SSR2	In-Kind Batch 3 (17-24) Dressed Cavities Ready for String (after Batch 3 Re-Cold Tests)	1					•		I
Production SSR1	16th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	}	(I				•		I
Production SSR1	17th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1					•		
Production SSR2	In-Kind Batch 5 (33-40) Dressed Cavities Qualified						•		
Production SSR1	18th In-Kind Dressed Cavity Qualified in Spoke Test Cryostat with High Power Coupler	1		j			•	İ	
Production SSR2	In-Kind Batch 4 (25-32) Dressed Cavities Ready for String (after Batch 4 Re-Cold Tests)	1					٠		
Production SSR1	SSR1 Cryomodule1 RF Tested in PIP2IT, Ready-for-Installation Milestone		1				٠		
Production SSR2	In-Kind Batch 5 (33-40) Dressed Cavities Ready for String (after Batch 5 Re-Cold Tests)	1					•	ļ	
Production SSR2	SSR2 Cryomodule1 RF Tested in PIP2IT Ready-for-Installation Milestone						•		
Production SSR2	SSR2 Cryomodule2 RF Tested in PIP2IT Ready-for-Installation Milestone						•		I
Production SSR2	SSR2 Cryomodule3 RF Tested in PIP2IT Ready-for-Installation Milestone	1					•		
Production SSR1	SSR1 Cryomodule2 RF Tested in PIP2IT, Ready-for-Installation Milestone						•		
	SSR2 Cryomodule4 RF Tested in PIP2IT Ready-for-Installation Milestone	1					•		
Production SSR2	SSR2 Cryomodule5 RF Tested in PIP2IT Ready-for-Installation Milestone	1					•	ļ	
Production SSR2	SSR2 Cryomodule6 RF Tested in PIP2IT Ready-for-Installation Milestone						•		
	SSR2 Cryomodule7 RF Tested in PIP2IT Ready-for-Installation Milestone						•		
							, , , , , , , , , , , , , , , , ,	ormil	

T5 Milestones – 650 MHz Cryomodules

13	T5 Milestone	FY2018	FY2019 FY2020	FY2021	FY2022 FY2023 FY	2024 FY2025 FY2026 FY2027
Prototype LB650	1st In-Kind Bare Cavity Delivered to Partner after FNAL Cold Testing in Vertical Test Stand	F12010	F12015 F12020	1		2024 112023 112020 112021
Prototype LB650	2nd In-Kind Dressed Cavity Qualified in Spoke Test Cryostat	1	+			
Prototype HB650	1st B.90 Dressed Cavity Qualified in Spoke Test Cryostat	1	•			
Prototype HB650	2nd B.90 Dressed Cavity Qualified in Spoke Test Cryostat	1	•			
Prototype HB650	3rd B.90 Dressed Cavity Qualified in Spoke Test Cryostat	1	•		Cha	irge #5
Prototype HB650	1st In-Kind B.92 JCAV Qualified in Vertical Test Stand	1	•			$\Pi g \subset \pi J$
Prototype HB650	1st B.92 prototype Dressed Cavity Qualified in Spoke Test Cryostat	1	•			0
Prototype LB650	1st In-Kind Dressed Cavity Qualified in Spoke Test Cryostat	1				
Prototype HB650	2nd In-Kind B.92 JCAV Qualified in Vertical Test Stand	1	•			
Prototype HB650	4th B.90 Dressed Cavity Qualified in Spoke Test Cryostat	1				
Prototype HB650	3rd In-Kind B.92 JCAV Qualified in Vertical Test Stand	1				
Prototype HB650	2nd B.92 Prototype Dressed Cavity Qualified in Spoke Test Cryostat	1				
Prototype LB650	2nd In-Kind Dressed Cavity Qualified in Spoke Test Cryostat	1				
Prototype HB650	4th In-Kind B.92 JCAV Qualified in Vertical Test Stand	1				
Prototype HB650	3rd B.92 Prototype Dressed Cavity Qualified in Spoke Test Cryostat	1				
Prototype LB650	1st FNAL Dressed Cavity Qualified in Spoke Test Cryostat					
Prototype LB650	2nd FNAL Dressed Cavity Qualified in Spoke Test Cryostat					
Prototype HB650	HB650 Prototype CryoModule RF Tested in PIP2IT for one cavity with Prototype 40kW SSA			•		
Prototype HB650	HB650 Prototype CryoModule RF Tested in PIP2IT			- C.	•	
LB650	In-Kind Dressed cavities Qualified at Partner Facility- Batch 1 (1-6)				• LB650	
LB650	In-Kind Dressed cavities Accepted - Batch 1 (1-6) Ready for String Integration at Partner facility				•	
Prototype HB650	HB650 Prototype CryoModule RF Tested in PIP2IT, after coming back from In-Kind, Ready-For-Installation Milestone				 Prototyp 	e
LB650	In-Kind Dressed cavities Qualified at Partner Facility- Batch 2 (7-12)				•	
LB650	In-Kind Dressed cavities Accepted - Batch 2 (7-12) Ready for String Integration at Partner facility					
LB650	In-Kind Dressed cavities Qualified at Partner Facility- Batch 3 (13-18)					IDCEC
HB650	In-Kind Dressed cavities Qualified - Batch 1 (1-6)				•	LB650
LB650	In-Kind Dressed cavities Accepted - Batch 3 (13-18) Ready for String Integration at Partner facility				•	Draduction
LB650	In-Kind Dressed cavities Qualified at Partner Facility- Batch 4 (19-24)				•	Production
HB650	In-Kind Dressed cavities Qualified - Batch 2 (7-13) (not to be assembled at Partner facility)					
LB650	In-Kind Dressed cavities Accepted - Batch 4 (19-24) Ready for String Integration at Partner facility				1	
LB650	In-Kind Dressed cavities Qualified at Partner Facility - Batch 5 (25-30)					
Prototype LB650	LB650 Prototype CryoModule RF Tested at Partner facility					
HB650	In-Kind Dressed cavities Qualified - Batch 1 (1-6) In Kind Dressed exciting Accorded - Batch 5 (25-20) Ready for String Interaction at Partner facility			-		
LB650	In-Kind Dressed cavities Accepted - Batch 5 (25-30) Ready for String Integration at Partner facility		HB650		HB650 *	
HB650	In-Kind Dressed cavities Qualified - Batch 3 (14-20) (not to be assembled at Partner facility)	1	Drotet	lunc	•	
LB650 Prototype LB650	In-Kind Dressed cavities Qualified at Partner Facility - Batch 6 (31-39)		Protot	ype	Production	
HB650	LB650 Prototype CryoModule RF Tested in PIP2IT Ready-For-Installation Milestone In-Kind Dressed cavities Qualified - Batch 2 (7-12)					
LB650	In-Kind Dressed cavities Qualmed - Batch 2 (7-12) In-Kind Dressed cavities Accepted - Batch 6 (31-39) Ready for String Integration at Partner facility	1				
HB650	In-Kind Dressed cavities Accepted - Batch 6 (31-35) Ready for String integration at Partner facility	1				
LB650	LB650 CryoModule1 RF Tested at Partner facility	1				•
LB650	LB650 CryoModule RF Tested at Partner facility	1				•
LB650	LB650 CryoModule3 RF Tested at Partner facility	1				•
LB650	LB650 CryoModule4 RF Tested at Partner facility	1				•
LB650	LB650 CryoModule1 RF Tested in PIP2IT Ready-For-Installation Milestone	1				•
HB650	HB650 CryoModule1 RF Tested in PIP2IT Ready-For-Installation Milestone	1				•
LB650	LB650 CryoModule5 RF Tested at Partner facility	1				•
LB650	LB650 CryoModule2 RF Tested in PIP2IT Ready-For-Installation Milestone	1				•
LB650	LB650 CryoModule6 RF Tested at Partner facility	1				•
LB650	LB650 CryoModule3 RF Tested in PIP2IT Ready-For-Installation Milestone	1				•
LB650	LB650 CryoModule7 RF Tested at Partner facility	1				•
HB650	HB650 CryoModule2 RF Tested in PIP2IT Ready-For-Installation Milestone	1				•
LB650	LB650 CryoModule8 RF Tested at Partner facility	1				•
LB650	LB650 CryoModule4 RF Tested in PIP2IT Ready-For-Installation Milestone	1				•
LB650	LB650 CryoModule9 RF Tested at Partner facility	1				•
LB650	LB650 CryoModule5 RF Tested in PIP2IT Ready-For-Installation Milestone					•
LB650	LB650 CryoModule10 RF Tested at Partner facility					•
LB650	LB650 CryoModule6 RF Tested in PIP2IT Ready-For-Installation Milestone					•
LB650	LB650 CryoModule11 RF Tested at Partner facility					•
LB650	LB650 CryoModule7 RF Tested in PIP2IT Ready-For-Installation Milestone					•
HB650	HB650 CryoModule3 RF Tested in PIP2IT Ready-For-Installation Milestone					•
LB650	LB650 CryoModule8 RF Tested in PIP2IT Ready-For-Installation Milestone					•
HB650	HB650 CryoModule4 RF Tested in PIP2IT Ready-For-Installation Milestone					•
LB650	LB650 CryoModule9 RF Tested in PIP2IT Ready-For-Installation Milestone					•
LB650	LB650 CryoModule10 RF Tested in PIP2IT Ready-For-Installation Milestone				1 1	i t <u>i</u> i
LB650	LB650 CryoModule11 RF Tested in PIP2IT Ready-For-Installation Milestone		<u> </u>	1	<u> </u>	I I* <u>I</u>

ab an-II

T5 Milestones – Cryogenic Systems

<u>L3</u>	T5 Milestone	FY2018	FY2019	FY2020	FY2021	FY2022	FY2023	FY2024	FY2025	FY2026	FY2027
Cryoplant	CryoPlant Preliminary Oxygen Deficiency Hazard Assesment Complete		+								
Cryoplant	CryoPlant Final Oxygen Deficiency Hazard Assesment complete			•							
Cryogenics Distribution System	Oxygen Deficiency Hazard analysis complete			•							
Cryoplant	CryoPlant Received and inspected at FNAL				•						
Cryogenics Distribution System	Cryogenic Distribution System in Tunnel Ready for Installation including U-Tubes and controls						•				
Cryoplant	CryoPlant Commissioned							•			
Cryoplant	Post-Commissioning Complete							٠			
Cryogenics Distribution System	Valve Distribution Box Installed							•			
Cryogenics Distribution System	Cryogenic Distribution System from Cryoplant to Tunnel Installed							+			

Last SSR2 cryomodule and LB650 Cryomodule ready for installation

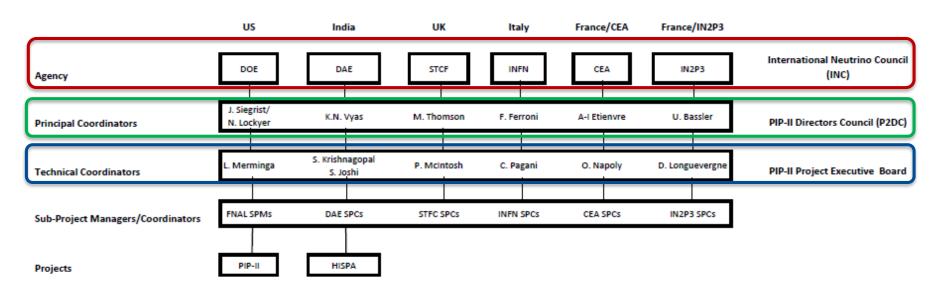
Charge #5

Outline

- Introduction
- Cryomodule Development Plan and Schedule
- In-kind Contribution and Partner Lab Management
- Technical Risks and Challenges
- Lessons Learned
- Summary

In-kind Contribution

ltem	US DOE	In-kind	Note
HWR Cryomodule	ANL builds cryomodule, FNAL tests.		
SSR1 Cryomodules	FNAL builds and tests all Cryomodules	Some prototype cavities, all production cavities, tuners and solenoids	
SSR2 Cryomodules	FNAL builds and tests all Cryomodules	Some prototype cavities, all production cavities, tuners and solenoids	
LB650 Cryomodules	FNAL tests all cryomodules	Prototype and production cryomodules including all sub components	Cavities from different partner lab
HB650 Cryomodules	 FNAL builds prototype cryomodule and transportation tests FNAL builds one production cryomodule. FNAL tests all cryomodules 	 Production cryomodules including all subcomponents Transportation design and procurement 	Couplers from different partner lab
Cryoplant	FNAL installation and commissioning	Cryoplant Procurement	
Cryogenic Distribution	FNAL design, procurement, installation and commissioning		


Cryomodule Repair after Delivery is Fermilab Responsibility

Partner Lab Management

PIP-II Partner Institutions Collaboration

PIP-II Oversight Committees

 Partner scope, delivery timeframe, milestones and management processes are described in joint *Project Planning Documents*, under development

Partner Lab Management – SPC List (1)

India Institute and Fermilab Collaboration (IIFC)

	Indian-DAE Sub-Project	US-Fermilab Sub-Project
Sub-Project	Coordinator	Coordinator
SSR1 Cavity Design	P. N. Prakash, IUAC	Leonardo Ristori
SSR2 Cavity Design	Srinavas Krishnagopal, BARC	Leonardo Ristori
SSR1 + SSR2 Cavity Manufactur	e Vinay Mishra, BARC	Leonardo Ristori
SSR Cryomodule	Vinay Mishra, BARC	Donato Passarelli
LB650 Dressed Cavity	Sumit Som, VECC	Saravan Chandrasekaran
HB650 Dressed Cavity	Avinash Puntambekar, RRCAT	Saravan Chandrasekaran
LB650 & HB650 Cryomodules	Prashant Khare, RRCAT	Saravan Chandrasekaran
RF Couplers	Rajesh Kumar, BARC	Nikolay Solyak
Cryogenic Systems	Anindya Chakravarty, BARC	Ben Hansen
SRF Infrastructure	Satish Joshi, RRCAT	Allan Rowe
Vertical Test Stand	S. Raghavendra, RRCAT	Alex Melnychuk
Horizontal Test Stand	Pradeep Kush, RRCAT	Joe Ozelis

Partner Lab Management – SPC List (2)

Italy INFN

	ITALY-INFN Sub-Project	US-Fermilab Sub-Project
Sub-Project	Coordinator	Coordinator
LB650 Cavity Design	Carlo Pagani	Martina Martinello
LB650 Dressed Cavity Fabricatio	n Carlo Pagani	Martina Martinello
LB650 Dressed Cavity Testing	Carlo Pagani	Martina Martinello

UK UKRI

Sub-Project	UK-UKRI Sub-Project Coordinator	US-Fermilab Sub-Project Coordinator
HB650 Cavity	Alan Wheelhouse	Martina Martinello
HB650 Cryomodule Assembly	Phil Atkinson	Tug Arkan
HB650 Transportation	Alan Wheelhouse	Tug Arkan

Partner Lab Management – SPC List (3)

France CEA

	France-CEA Sub-Project	US-Fermilab Sub-Project
Sub-Project	Coordinator	Coordinator
LB650 Cryomodule Design	Nicolas Barzin	Vincent Roger
LB650 Cryomodule Assembly	Catherine Madec	Tug Arkan
LB650 Cryomodule Testing	Catherine Madec	Tug Arkan
LB650 Transportation	Catherine Madec	Tug Arkan
650 MHz Coupler	TBD	Nikolay Solyak

France IN2P3

	France-IN2P3 Sub-Project	US-Fermilab Sub-Project
Sub-Project	Coordinator	Coordinator
SSR2 Jacketed Cavity and Tuner	David Longuevergne	Donato Passarelli
SSR2 Coupler	David Longuevergne	Donato Passarelli

Partner Lab Management and Standardization

- Working towards: Common Design Software
 UG NX and Siemens Teamcenter
- Working towards: Common Traveler Data Sets
- Working towards: Standard Units
- Standard Non-Conformance-Report and its Work Flow
- Hold Point Data Reviews
- Common Acceptance Criteria
- Partner Lab's QA plan Approved by Both Partners and Fermilab

Outline

- Introduction
- Cryomodule Development Plan and Schedule
- In-kind Contribution and Partner Lab Management
- Technical Risks and Challenges
- Lessons Learned
- Summary

WBS 121.02 Risk Management

Charge #2,7

SRF and Cryogenics Risks

- High Risks: 7
- Medium Risks: 17
- Low Risks: 12

High Risks

RI-ID	Title
RT-121-02-001	650 Cryomodule is damaged during transportation
RT-121-02-003	Underestimated resources for design optimization of SSR1 CM (1)
RT-121-02-003-B	Underestimated resources for design optimization of HB650 CM (1)
RT-121-02-003-C	Underestimated resources for design optimization of SSR2 CM (1)
RT-121-02-004	SRF pre-production input couplers are unreliable
RT-121-02-005	650 MHz IOT Amplifiers fail
RT-121-02-006	Cryomodule production rate at Fermilab is too slow

Most high risks retired by CD-3 except -001, -006

WBS 121.02 Risk Management

Charge #2,7

Medium Risks

RI-ID	Title
RT-121-02-007	SSR1 Cryomodule design modifications identified late in design cycle
RT-121-02-008	HWR Cryomodule does not meet technical performance requirements
RT-121-02-009	SSR1 CM (2) Performance at PIP2IT CMTS does not meet technical requirements
RT-121-02-010	LB650 CMs (1-11) performance at CMTS does not meet technical requirements
RT-121-02-011	SSR2 Production CMs (2-7) do not meet technical performance requirements at PIP2IT
RT-121-02-012	HB650 production CMs (2-4) do not meet technical performance requirements at CMTS
RT-121-02-016	Cavity yield is lower than expected to support production
RT-121-02-013	Delay in access to SRF testing and fabrication infrastructure
RT-121-02-014	Insufficient quality of installed cavities
RT-121-02-015	Insufficient cavity production delivery rate (US/International)
RT-121-02-017	Niobium quality control is inadequate
RT-121-02-018	HB650 Cryomodule assembly and integration
RT-121-02-019	Failure of SRF cavity processing equipment
RT-121-02-020	Cryoplant delivery is delayed
RT-121-02-021	SRF Test Infrastructure Cryogenic Plant Failure
RT-121-02-027	CDS components delayed delivery

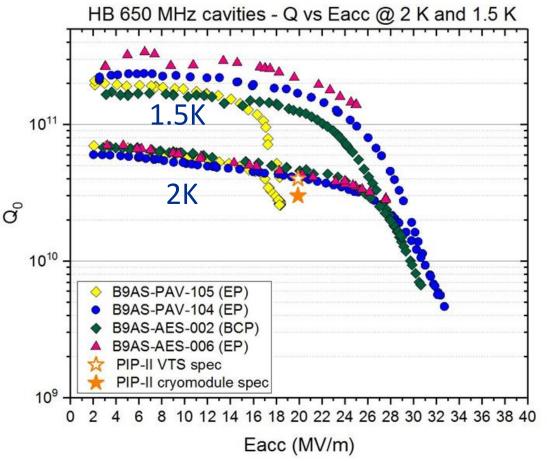
2K Heat Load Specification

	HWR	SSR1	SSR2	LB650	HB650
Cavity length	0.207	0.205	0.438	0.705	1.0438
R/Q	272	242	297	341	610
G	48	84	115	193	260
Nominal Gradient	9.7	8.6	11.4	15.6	18.7
Nominal Q0	5.0E+09	8.3E+09	1.0E+10	2.2E+10	3.0E+10
Cavity number	8	16	35	33	24
Cryomodule number	1	2	7	11	4
1 Cav Nominal Dynamic Heat Load	3.0	1.6	8.4	15.9	20.8
Current Leads Dynamic Heat Load		2.0	1.5		
Total Nominal Dynamic Heat Load	23.7	28.9	304.3	525.6	499.7
Total Expected Dynamic Heat Load					
Static Heat Load per CM Type	30	45	120.4	63.8	30
Total PIP-II Static HeatLoad					289.2
Total PIP-II Dynamic HeatLoad					1382.2
Total PIP-II Cryogenic Heat Load (2K)				1672	

ED0008200 PIP-II Cryogenic Heat Load

Nominal values based on CDR and latest analysis Heat Load does not including uncertainty and margin

2K Heat Load R&D Goal


	HWR	SSR1	SSR2	LB650	HB650
Cavity length	0.207	0.205	0.438	0.705	1.0438
R/Q	272	242	297	341	610
G	48	84	115	193	260
Nominal Gradient	9.7	8.6	11.4	15.6	18.7
Nominal Q0	5.0E+09	1.0E+10	1.5E+10	3.0E+10	4.0E+10
Cavity number	8	16	35	33	24
Cryomodule number	1	2	7	11	4
1 Cav Nominal Dynamic Heat Load	3.0	1.3	5.6	11.9	15.6
Current Leads Dynamic Heat Load		2.0	1.5		
Total Nominal Dynamic Heat Load	23.7	20.5	195.9	394.2	374.7
Total Expected Dynamic Heat Load					
Static Heat Load per CM Type	30	45	120.4	63.8	30
Total PIP-II Static HeatLoad					289.2
Total PIP-II Dynamic HeatLoad					1009.1
Total PIP-II Cryogenic Heat Load (2K)					1298

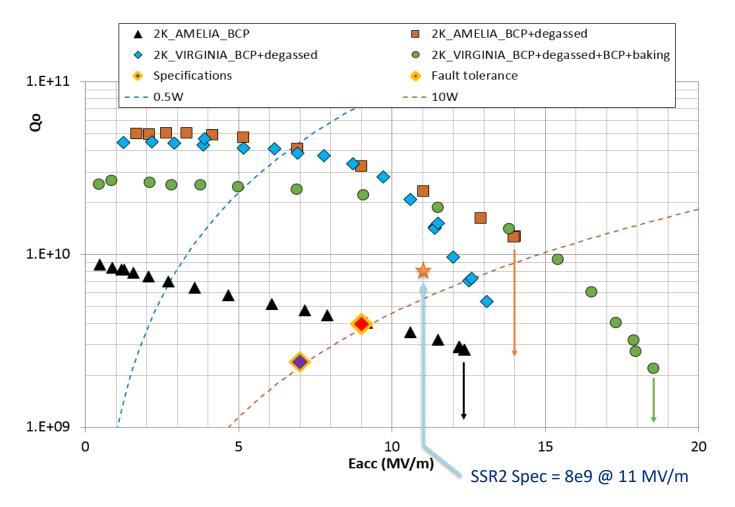
ED0008200 PIP-II Cryogenic Heat Load

R&D Supported both by FNAL and partner labs

High Q R&D – 650 MHz 1-cell Results

EP + 120C baking only. N-doping soon

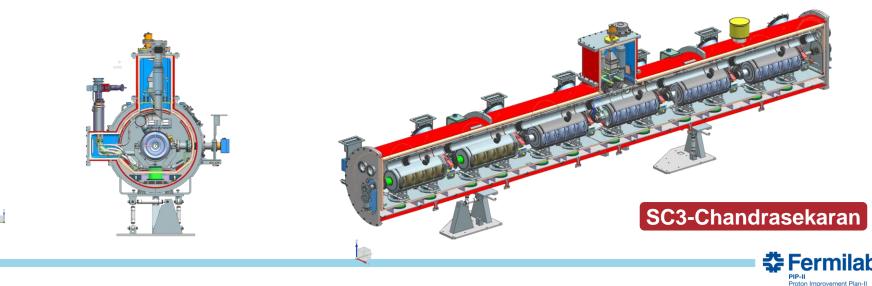
M. Martinello


VTS test results from B9AS-PAV-104 and B9AS-AES-106 after 75C/120C baking and 40µm EP reset, respectively. Lower and upper set of curves represent 2 K and 1.5 K measurement, respectively. B9AS-PAV-105 after EP and B9AS-AES-006 after BCP are illustrated for comparison.

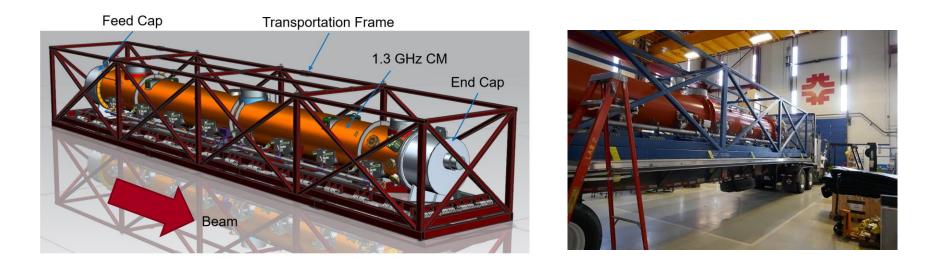
High Q cavity procedure is being optimized

High Q R&D – SSR

ESS Double Spoke Cavities

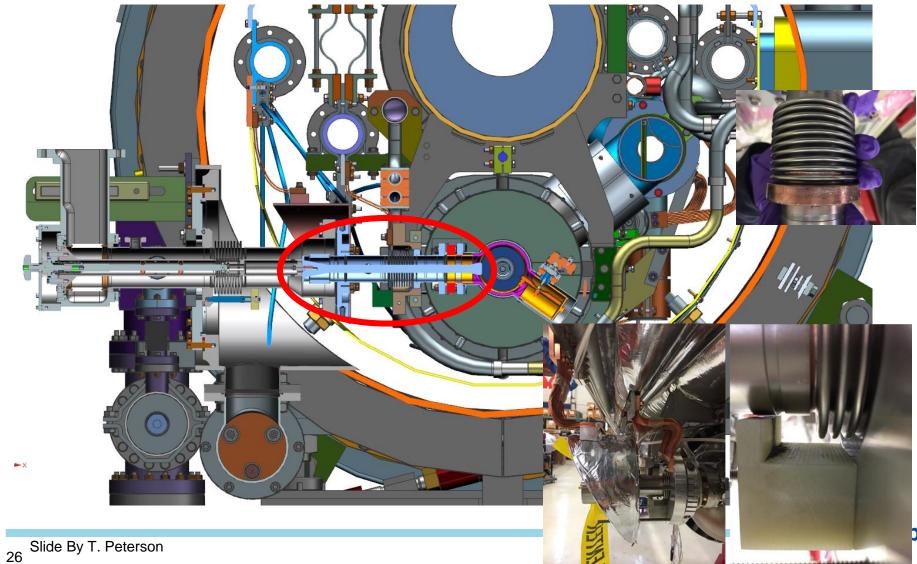

Results from ESS spoke cavity are encouraging

D. Longuevergne

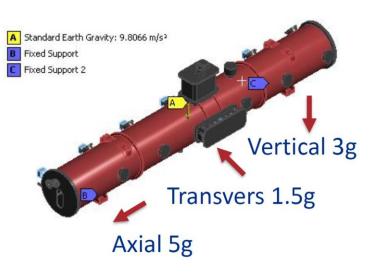


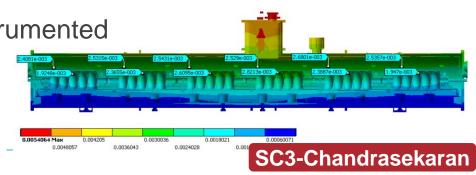
HB650 Cryomodule Design Features to Support High Q

- Cryogenic System Supports Fast Cool Down
- Cryomodule Thermal Design to Minimize Thermoelectric Current
- Magnetic Shield to Minimize Ambient Earth Magnetic Field
 - Global and local magnetic shield design
- Better Instrumentation for High Q operation


Transportation Challenge in LCLS-II

LCLS-II Cryomodule – inner coupler bellows failures at cavities 4 and 5 in F1.3-06 (later in cavity 1 in F1.3-05)

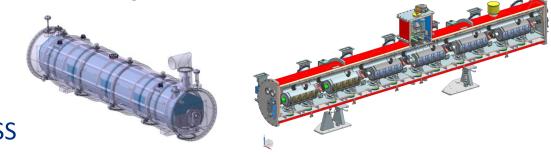

LCLS-II Cryomodule – inner coupler bellows failures at cavities 4 and 5 in F1.3-06 (later in cavity 1 in F1.3-05)



SLAC

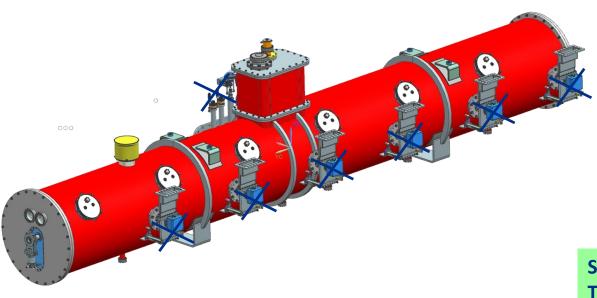
Transportation is Part of the Cryomodule Prototyping

- Transportation is Part of the Cryomodule Prototyping
- Transportation Studies (three trips)
 - HB650 Prototype Cryomodule
 - Fully Tested
 - FNAL to Europe, fully instrumented
 - Test Optional
 - Europe to FNAL, fully instrumented
 - Verification Test
 - LB650 Prototype Cryomodule
 - Partially Tested
 - Europe to FNAL, fully instrumented
 - Verification Test



650 MHz Cryomodule Transportation

- Conducted transportation analysis of two leading CM design concepts: strong-back (SSR1) and spaceframe (ESS, SNS)
- Held 650 MHz cryomodule design advisory meeting
 - Hasan Padamsee, Robert Laxdal, Michael Kelly, Thomas Peterson,, Ed Daly, Mark Wiseman, Joel Fuerst
- Preliminary analysis showed no technical preference in terms of shipping and alignment
- Final decision considered: Technical evaluation; Schedule & Cost impact; CEA & other partners considerations;
- A preliminary design choice was made in November to adopt strong back design
- RLS includes shipping proto HB650 from US to Europe and back


Spaceframe Design CEBAF, SNS, ESS

Bottom Support (strong back) FRIB, PIP-II

🛟 Fermilab

Transportation Strategy and Specification (Draft)

To be constrained:

- Heat exchanger
- Gate valves

To be removed during transportation:

- Warm Couplers and Door knobs
- Actuators
- Pressure Gauges and Transducers
- Others

Specified accelerations during Transportation on Cryomodule:

- Axial: 2.5g
- Transverse: 1.5g
- Vertical: 2.5g

Fully instrumented with accelerometers, etc.

Partner Lab Risk Management

System/Component	India/DAE	Italy/INFN	UK/UKRI	France/CEA /IN2P3	Fermilab Backup
Cavities					
SSR1 - jacketed	\checkmark				\checkmark
SSR2 -jacketed	\checkmark			\checkmark	✓
LB650 – Jacketed	\checkmark	\checkmark			\checkmark
HB650 – jacketed	\checkmark		\checkmark		\checkmark
Cryomodules					
SSR2	\checkmark				\checkmark
LB650				\checkmark	\checkmark
HB650	\checkmark		\checkmark		\checkmark
SSR2 Cold Magnets	\checkmark				\checkmark
Cryoplant	\checkmark				

Partner Labs have their own risk management

Partner Lab Risk Management

Charge #2,7

- Joint Cryomodule Design Team with Experienced Staff
- Fermilab Staff Participates Partner Lab Activities
- Redundancy Capability Explored
- Support Activities including Quality Assurance are Built into Resource Loaded Schedule
- Partner Labs Participates Monthly Status Reporting

International Risk Mitigation is being Developed

Fermilab has staff and infrastructure to support at risk components

Outline

- Introduction
- Cryomodule Development Plan and Schedule
- In-kind Contribution and Partner Lab Management
- Technical Risks and Challenges
- Lessons Learned
- Summary

Lessons Learned

- Lessons Learned from other Projects
 - Transportation by design
 - Comprehensive fastener torque specification
 - Microphonics Early Studies
 - Cryomodule Test with Sufficient Duration
- Lessons Learned within PIP-II
 - Realtime Traveler
 - Spoke cavity S104 near-miss of uncontrolled pump down

Summary

- Cryomodule Development Plan Allows Sufficient Prototyping to Feedback to Production.
- In-kind Contribution has Redundancy of Capabilities.
- Technical Risks and Challenges are mostly Understood
- Lessons Learned from other Projects will be Positive for PIP-II Cryomodules.

34

