

Combined explanations of (g-2) and implications for a large muon EDM

Saskia Charity and Joe Price Muon Department Journal Club 27 November 2018

Overview

- Paper for discussion today:
 - Hoferichter, Philipp Schmidt-Wellenburg, arXiv:1807.11484
- Summary of main points in the paper and background
- Key arguments
- Conclusions
- Further reading

Combine			
_			
2			
Wit			
anoma			
there			
often			
exclue			
confir			
from			
enford			
to \exp			
limits			
experi			
PSI c			
as the			
in con			
SM.			

- "Combined explanations of (g-2) and implications for a large muon EDM" — Andreas Crivellin, Martin

ed explanations of $(g - 2)_{\mu,e}$ and implications for a large muon EDM

Andreas Crivellin,¹ Martin Hoferichter,² and Philipp Schmidt-Wellenburg¹

¹Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland ²Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA

th the long-standing tension between experiment and Standard-Model (SM) prediction in the alous magnetic moment of the muon, $a_{\mu} = (g-2)_{\mu}/2$, at the level of 3–4 σ , it is natural to ask if could be a sizable effect in the electric dipole moment (EDM) d_{μ} as well. In this context it has been argued that in UV complete models the electron EDM, which is very precisely measured, des a large effect in d_{μ} . However, the recently observed 2.5 σ tension in $a_e = (g-2)_e/2$, if rmed, requires that the muon and electron sectors effectively decouple to avoid constraints $\mu \to e\gamma$. We briefly discuss UV complete models that possess such a decoupling, which can be ced by an Abelian flavor symmetry $L_{\mu} - L_{\tau}$. We show that, in such scenarios, there is no reason pect a correlation between the electron and muon EDM, so that the latter can be sizable. New on d_{μ} improved by up to two orders of magnitude are expected from the upcoming $(g-2)_{\mu}$ riments at Fermilab and J-PARC. Beyond, a proposed dedicated muon EDM experiment at could further advance the limit. In this way, future improved measurements of a_e , a_{μ} , as well e fine-structure constant α are not only set to provide exciting precision tests of the SM, but, mbination with EDMs, to reveal crucial insights into the flavor structure of physics beyond the

Background to the paper

• We are all familiar with the muon magnetic dipole moment anomaly:

 $\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{th} = 270(85) \times 10^{-11}$

- and the limit from E821 on the muon electric dipole moment (EDM): $|d_{\mu}| < 1.9 \times 10^{-19} \text{ e.cm}$
- As well as confirming/denying the a_{μ} discrepancy, the FNAL g-2 experiment hopes to reduce the limit by factor of 100.
- The paper explores the question of whether the same BSM scenario could contribute both the muon magnetic dipole anomaly and a large muon electric dipole moment.

- What is the maximum possible size for the muon EDM?
- is as large as the real one"
- Where does this number come from?

• In the paper, they claim that the limit $|d_{\mu}| < 1.9 \times 10^{-19}$ e.cm is "600 times larger than than expected from the central value of a_{μ} assuming that the imaginary part of the corresponding BSM contribution

$$\begin{split} \omega_{a\eta} &= \omega_a + \omega_\eta = \frac{e}{m} \left[a_\mu B - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\beta \times E}{c} \right] + \eta_{\frac{1}{2}} \\ \eta &= \frac{4d_{\mu} + m_\mu c}{\hbar} \end{split}$$

Tilt angle due to muon EDM:

$$\delta = \tan^{-1} \left(\frac{\omega_{\eta}}{\omega_{a}} \right) = \tan^{-1} \left(\frac{\eta \beta}{2a_{\mu}} \right)$$

$$\omega_{a\eta} = \omega_a + \omega_\eta = \frac{e}{m} \left[a_\mu B - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\beta \times E}{c} \right] + \eta_{\frac{1}{2}}$$
$$\eta = \frac{4d_{\mu} + m_\mu c}{\hbar}$$

We can also say

Tilt angle due to muon EDM:

$$\delta = \tan^{-1} \left(\frac{\omega_{\eta}}{\omega_{a}} \right) = \tan^{-1} \left(\frac{\eta \beta}{2a_{\mu}} \right)$$

that:
$$\frac{\omega_{a\eta}}{\omega_{a}} = \sqrt{1 + \frac{\omega_{\eta}}{\omega_{a}}}$$
$$= \sqrt{1 + \delta^{2}}$$
$$\approx 1 + \frac{\delta^{2}}{2}$$
$$= 1 + \frac{\eta^{2}\beta^{2}}{8a_{\mu}^{2}}$$

$$\omega_{a\eta} = \omega_a + \omega_\eta = \frac{e}{m} \left[a_\mu B - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\beta \times E}{c} \right] + \eta_{\frac{2}{2}}$$
$$\eta = \frac{4d_{\mu} + m_\mu c}{\hbar}$$

We can also say

Tilt angle due to muon EDM:

$$\delta = \tan^{-1} \left(\frac{\omega_{\eta}}{\omega_{a}} \right) = \tan^{-1} \left(\frac{\eta \beta}{2a_{\mu}} \right)$$

that:
$$\frac{\omega_{a\eta}}{\omega_{a}} = \sqrt{1 + \frac{\omega_{\eta}}{\omega_{a}}}$$
$$= \sqrt{1 + \delta^{2}}$$
$$\approx 1 + \frac{\delta^{2}}{2}$$
$$= 1 + \frac{\eta^{2}\beta^{2}}{8a_{\mu}^{2}}$$

Rearrange to get $\Delta a_{\mu} = \omega_a \eta^2 \beta^2$ $8a_{''}^2$

Putting this together we get: $d_{\mu}^{BNL} \sim 600 \times d_{\mu}^{CALCULATED}$

 $d_{\mu}^{CALCULATED} = O(10^{-22} \text{ e.cm})$

Main points of the paper

- A value of d_{μ} greater than 3.7 x 10⁻²⁴ e.cm is ruled out in minimally-flavor-violating (MFV) scenarios since the limit on the EDM of the electron, d_e, is tiny (from quadratic mass scaling): $|d_e| < 1.1 \times 10^{-29} e.cm^{1}$
- A recent precise measurement of the fine structure constant α suggests a discrepancy in a_e at the 2.5 σ level of the opposite sign to Δa_{μ} .
- A scenario that allows an electron g-2 anomaly in the opposite direction to the g-2 anomaly must contain flavor violation.

¹Nature volume 562, pages 355–360 (2018) ²Science volume 360, pages 191–195 (2018)

Main points of the paper

- A value of d_{μ} greater than 3.7 x 10⁻²⁴ e.cm is ruled out in minimally-flavor-violating (MFV) scenarios since the limit on the EDM of the electron, d_e , is tiny (from quadratic mass scaling): $|d_e| < 1.1 \times 10^{-29} e.cm^{1}$
- A recent precise measurement of the fine structure constant α suggests a discrepancy in a_e at the 2.5 σ level of the opposite sign to Δa_{μ} .
- A scenario that allows an electron g-2 anomaly in the opposite direction to the g-2 anomaly must contain flavor violation.

¹Nature volume 562, pages 355–360 (2018) ²Science volume 360, pages 191–195 (2018)

• Recent measurements in semileptonic B-decays also strongly challenge the MFV assumption.

These discrepancies with the SM predictions are most pronounced in semi-leptonic Bdecays. Here, we have two classes of processes:

• $b \rightarrow c \tau \nu$: In these processes, mediated at tree-level in the SM, several measurements like

$$R_{\tau}(X) \equiv \frac{\mathcal{B}(B \to X \tau \nu_{\tau})}{\mathcal{B}(B \to X \ell \nu_{\ell})} \quad \text{with } X = D, D^{*},$$

$$R_{\tau}(J/\psi) \equiv \frac{\mathcal{B}(B_{c} \to J/\psi \tau \nu_{\tau})}{\mathcal{B}(B_{c} \to J/\psi \ell \nu_{\ell})} \quad (1)$$

with $\ell = e, \mu$ point towards lepton flavour universality violation (LFUV) in $\tau - \mu, e$ at the $\approx 4\sigma$ level [1].

• $b \to s\ell^+\ell^-$: This flavour changing neutral current process is loop suppressed and is proportional to the CKM element V_{ts} . Here the measurements of $R_{\mu}(K)$ [2] and $R_{\mu}(K^*)$ [3], defined as

$$R_{\mu}(X) \equiv \frac{\mathcal{B}(B \to X\mu^{+}\mu^{-})}{\mathcal{B}(B \to Xe^{+}e^{-})}, \qquad (2)$$

are supported by other $b \to s\mu^+\mu^-$ observables (like $P_5^{\prime\mu} \equiv P_5^{\prime}$ as defined in [4]) which also show deviations from the SM predictions.

The paper proposes and compares non-MFV scenarios that account for the following conditions: Δa_{μ} and Δa_{e} of opposite sign $|d_{\mu}| >> |d_{e}|$

ArXiv 1803.10097

Criteria for BSM scenarios that fit

- A BSM scenario that has Δa_{μ} in the opposite direction to Δa_e would have to violate quadratic mass scaling
- Must include effective decoupling of the μ and e BSM sectors in order to satisfy limit on $\mu \rightarrow e\gamma$ from MEG
- Such a scenario would allow large d_{μ} and small d_{e}

What scenarios could work?

ArXiv 1605.05081

Criteria for BSM scenarios that fit

- Some form of enhancement required to the BSM mechanism that allows all this; either:
 - It must be light
 - It must have $\mathcal{O}(I)$ couplings for TeV-scale masses
 - It must have large (> SM) coupling to Higgs field (chiral enhancement)
 - e.g. tan β in MSSM, m_q/m_l in leptoquark models
- Light (pseudo-) vector particles (dark photons) ruled out

As mentioned in the introduction, light (pseudo-) vector particles ("dark photons") are problematic. Neutral vectors give a necessarily positive effect and can therefore only account for a_{μ} , while neutral axial vectors give a negative effect and are therefore only compatible with a_e .

Criteria for BSM scenarios that fit

- A model that introduces a single light scalar to resolve both anomalies is proposed in ArXiv 1806.10252 ("A tale of two anomalies" H. Davoudiasl and W. J. Marciano)
- Crivellin et. al.'s paper says that this model would require heavy BSM degrees of freedom to make it UV complete —> not as simple as it appears
- Instead, proposes models above the EW breaking scale with chiral enhancement

Specific scenarios

- The paper considers the following simplified models:
 - (I) Leptoquark (LQ) models
 - (2) MSSM
 - (3) Little-Higgs inspired models / extradimensions
 - (4) Model with new heavy leptons and possibly a new scalar
- It concludes that, of these, the only plausible scenario is (4)

What is wrong in the first 3?

Specific scenarios

- Leptoquark (LQ) models
 - Minimal LQ models add only one new scalar or vector particle to the SM \rightarrow minimal chiral enhancement
 - Can only account for a_{μ} by decoupling the electron sector completely \rightarrow can't explain both Δa_{μ} and Δa_{e} at the same time

Extra-Dimension and little-Higgs models

- e.g. Randall-Sundrum scenario, littlest-Higgs model
- Provide massive fermions and vectors that are resonances of SM particles that do not mix with the SM
- Small effect on a_{μ} since couplings are mainly LH not enough chiral enhancement
- Vector resonances are not flavor-specific and violate the MEG limit

Specific scenarios

MSSM

- Usually discuss constrained MSSM
- Assume flavor-universal SUSY breaking terms that respect naive MFV (which we already found out has to be rejected)
- Although the MSSM has 3 generations of sleptons so it is *technically* possible to decouple effects in electrons and muons...
- ... but introduces unnatural flavor dependence e.g. fine-tuning

We are left with scenario (4): model with a new scalar and fermions

Model with a new scalar and fermions

- Vector-like generations of leptons introduced
- Same requirements for maximal chiral enhancement
- Models with vector-like fermions could account for such a case, using an Abelian flavor symmetry to ensure the decoupling of e and μ
 - This could also be relevant to the anomalies seen in b \rightarrow sµ+µ- decays
 - Would allow large d_{μ} and small d_{e}
 - Would remain viable even if the tension in a_e vanished

FIG. 1: Generic diagrams contributing to the dipole operator in Model I.

Use limit on α to constrain muon EDM

Gives 7.5 x 10 -19 e.cm

FIG. 3: Three-loop diagram that produces a contribution to the electron EDM by an insertion of the muon EDM operator indicated by the cross. The other diagrams with insertions at the remaining muon-photon vertices as well as the permutations at the electron line are not shown.

Model with a new scalar and fermions

FIG. 2: Allowed regions of a_{μ} in the $\lambda_E = \lambda_L - M_E = M_L$ plane for $\kappa_L = 0$ and $\kappa_E = \pm 1$ for muon (left) and electron (right). The bounds are derived from $\sigma(h \to \mu^+ \mu^-)/\sigma(h \to \mu^+ \mu^-)_{\rm SM} = 0 \pm 1.3$ [79-81], $\sigma(h \to e^+ e^-)/\sigma(h \to e^+ e^-)_{\rm SM} < 3.7 \times 10^5$ [82], $Z \to \ell \ell$ [79, 83], and direct searches for new heavy charged leptons [84]. The $h \to \ell \ell$ limits are implemented at 2σ , the ones for $Z \to \ell \ell$ at 3σ , as explained in the main text.

Support slides

11/27/2018 Presenter I Presentation Title 18

Transformation properties of MDM and EDM

	Р	Т	CP
μ	×	✓	✓
d	×	✓	✓
B	×	✓	✓
E	✓	×	×
$\mu \cdot B$	×		✓
$d \cdot E$	✓	×	×

Table 1: The transformation properties of the magnetic and electric dipole moments, and their respective terms in the interaction Hamiltonian in equation 2.3.

fields **B** and **E** is given by:

 $\mathcal{H} = -$

$$-\mu \cdot B - d \cdot E$$

(2.3)

