

Chris Hill

Science Goals to Requirements and International CMS Role in QA

Christopher S. Hill, Project Scientist

ESH and QA Review November 29, 2018

- Biographical sketch
- Science Flowdown to Requirements
- Example of Requirements Documentation
- International QA process

Summary

Biographical Sketch

- Chris Hill
 - Professor, Ohio State University
 - CMS Phase 2 Tracker Management Board (2015 2016)
 - CMS Deputy Physics Coordinator (2012 2013)
 - *ex officio* CMS XEB, CMS MB, **Upgrade Physics Coordinator**
 - CMS Exotica Convener (2010 2012)
 - USCMS Phase 2 R&D Steering Committee (2013 2014)
 - CDF Run II Silicon Detector Project Leader (2001 2002)
 - Experience with design/construction/commissioning of numerous Si projects
 - CMS Tracker Outer Barrel, CMS Phase 1 FPIX
 - CDF Run IIa, L00/ISL/SVXII, CDF Run IIb
 - USCMS L2 HL-LHC Tracker PM (2015 2016)
 - USCMS HL-LHC Project Scientist (2016 –)

- In preparation for CD1, formalized the science flowdown to technical requirements
 - Established requirements via R&D, implemented systems for documentation, tracking, verification, and change
- We recognize the following levels (highest to lowest):
 - Science Drivers these come from the P5 report and are broad scientific questions that multiple HEP experiments are trying to address in different ways
 - Science Goals these are the more specific scientific questions that we will address with CMS
 - Science Requirements these are the CMS wide (i.e. multiple subdetectors involved) performance requirements that CMS needs to meet in order to achieve the science goals
 - Science-Engineering Requirements these are US CMS sub-project specific performance requirements that a given L2 project needs to meet in order for the whole of CMS to meet the science requirements
 - Engineering Requirements these are the technical/safety requirements that a particular US CMS L2 subproject needs to meet with its designs in order for the science-engineering requirements to be met

International CMS & US CMS Project Scientist QA program designed to meet

Low

High

these

Requirements come from iCMS

- Science, science-engineering requirements
 necessarily determined at the international level
 - Many engineering requirements also
- Science requirements but most engineering requirements were not yet specified in the CMS Phase II Upgrade Technical Proposal (CERN-LHCC-2015-010)
- In 3 yrs since, significant R&D by CMS, (including many of us in U.S. CMS) established engineering requirements for sub-system level *Technical Design Reports (TDRs)*
- With these TDRs, iCMS experiment established the baseline design and documented the performance expectations for each sub-detector
 - Collectively these documents, in turn, establish science, science-engineering, and engineering requirements that the US CMS project scope must meet

The Compact Muon Solenoid Phase II Upgrade Technical proposal

CERN-LHCC-2015-010 https://cds.cern.ch/record/ 2020886

Status of TDRs

Subsystems

- 1. Tracker: consists of Outer Tracker and Inner (Pixel) Tracker
 - **Tracker TDR**: <u>https://cds.cern.ch/record/2272264</u>. UCG report: <u>https://cds.cern.ch/record/2295762</u>
 - Approved by CERN RB Dec. 4, 2017
- 2. Barrel Calorimeter: consists of hadronic and electromagnetic
 - Barrel Calorimeters (TDR): https://cds.cern.ch/record/2304338. UCG report: https://cds.cern.ch/record/2304338
 - Approved by CERN RB March 7, 2018
- 3. Endcap Calorimeter: both hadronic and electromagnetic parts
 - Endcap Calorimeter (TDR) <u>https://cds.cern.ch/record/2293646</u>. UCG report: <u>https://cds.cern.ch/record/2313441</u>
 - Approved by CERN RB April 18, 2018
- 4. Muon Systems: both hadronic and electromagnetic parts
 - Muon Systems (TDR): <u>https://cds.cern.ch/record/2283189</u>. UCG report: <u>https://cds.cern.ch/record/2304341</u>
 - Approved by CERN RB March 7, 2018
- 5. L1-Trigger; DAQ
 - L1-Trigger (interim-TDR): <u>https://cds.cern.ch/record/2283192</u> TDR Q1 2020
 - DAQ/HLT (Interim-TDR): <u>https://cds.cern.ch/record/2283193</u> TDR Q2 2021
 - Both iTDRs approved by RB Dec. 4, 2017
- 6. MIP Timing Detector
 - MIP Timing (Technical Proposal) : https://cds.cern.ch/record/2296612 TDR Q1 2019
 - TP approved by CERN RB March 7, 2018

ener Organization für Nauleur Research. OCDNU/005-2017-012 OMS-T05-17-000 12 Segmenter pour In Inchendre zudfaller. 12 Segmentate 2017	
CMS	
The Phase-2 Upgrade of the CMS Muon Detectors	
ECHNICAL DESIGN REPORT	

CERN Review Committees/Boards: LHCC (Technical approval recommendation), UCG (Cost/Schedue/Risk approval recommendation), and RB (formal approval). LHCC and UCG report to RB.

- We document the requirements flowdown as follows:
- Science Goals and Science requirements in one spreadsheet with two tabs,
 - cms-docdb.cern.ch docid=13337
 - Under project scientist control
- Sci-Engr and Engineering requirements in one spreadsheet per L2 area with two tabs,
 - cms-docdb.cern.ch docid=13388, 13447, 13318, 13536
 - Under L2 Manager, L2 SE control

CMS Document 13337-v8

My preferences Email notifications Limit my groups Logour

Science Requirements for US CMS HL-LHC

Document #:	Abstract:	Viewable by:
CMS-doc-13337-v8	This entry contains the controlled US CMS HL-LHC Project	
Technical Data	Science requirements. These are the top level science	
Submitted by:	requirements derived from the experiment science goals which are	OSCINS-UP- PEVIEW/S
Jeffrey Dolph	also included in this document. Lower levels of science-	USCMS-UP-TEAM
Updated by:	Project WPS Level 2 Systems	USCMS-UP-
Christopher Scott Hill	Floject WDS Level 2 Systems	PHASE2
Document Created:	Files in Document:	
15 Jun 2017, 20:48		Modifiable by:
Contents Revised:	- US HILL HC CMS Sei Ceale and Sei Deguiremente view (22.1	
10 Nov 2018, 04:40		
10 Nov 2019 04:40	KD)	USCMS-UP-
10 100 2018, 04.40		PHASE2
	Get all mes as <u>tar.gz</u> , <u>zip</u> .	
Update Document	Topics:	Quick Links:
the data Manadata		Latest Version
Update Metadata	 <u>Countries</u>:USA:US HL-LHC Upgrades:Technical Scope 	Others Manadaman
	 <u>Countries:USA:US HL-LHC Upgrades:Cost, Schedule, Risk</u> 	Other versions:
Add Files	<u>Countries:USA:US HL-LHC Upgrades:Organisation</u>	05 Oct 2017 15:44
Create Similar	Countries:USA:US HL-LHC Upgrades	CMS-doc-13337-v6
Create Similar	Countries.USA.US HL-LHC Upgrades.Reviews	08 Sep 2017, 17:59
Watch Document	Authors:	CMS-doc-13337-v5
Watch Document		17 Aug 2017, 21:16
	<u>Christopher Scott Hill</u>	CMS-doc-13337-v4
		17 Aug 2017, 20:56
	Referenced by:	CMS-doc-13337-v3
	CMS-doc-13388: OT USCMS HI -I HC Systems Engineering	17 Aug 2017, 20:01
	CMS-doc-13447: Endcap USCMS HL-LHC System Engineering	16 Aug 2017 21:55
	CMS-doc-13536: MIP Timing Layer HL-LHC Systems	CMS-doc-13337-v1
	Engineering	15 Jun 2017, 20:48
	- CMC day 12219: Trigger LICCMC HILL HC Systems Engineering	

3318: Trigger USCMS HL-LHC Systems Er

Sample of Requirements Documentation

Science Goals (example 1 of 4)

cms-docdb.cern.ch docid=13337

	· · ·	/		
Title	ID	Туре	Experimental Goal	Rationale
Higg Coupling	sci-goal-1	experimental	HL-LHC CMS is to achieve few percent	This is a HEP wide goal that follows
Measurements		objective	measurements of the Higgs couplings	from 1 of 5 P5 science drivers listed in
			and constraints on the its invisible	the 2014 P5 report , namely to "use the
			width.	Higgs boson as a new tool for
				discovery."

Science Requirements (example 1 of 14)

cms-docdb.cern.ch docid=13337

Title	ID	Туре	Requirement	Parents
Primary Vertex	sci-req-7	requirement	Accurate reconstruction of Higgs decays requires	sci-goal-1, sci-goal-2,
Identification (and			accurate primary vertex identification (Η to γγ).	sci-goal-3, sci-goal-4
purity)			Accurate reconstruction is also necessary for DM	
			candidates, rare SM processes, or BSM signals.	

EC Science-Engineering Requirements (example 1 of 12)

cms-docdb.cern.ch docid=13447

Title	ID	Туре	Requirement		
				Rationale	Parents
Precision timing of	EC-sci-engr-009	requirement	Showers reconstructed in both the silicon	For good pileup mitigation, aid in identifying the primary	sci-req-5, sci-req-6,
showers			and scintillator sections of the EC shall have	vertex of the triggering interaction	sci-req-7, sci-req-8,
			precise timing (~50 ps) for each shower		sci-req-9, sci-req-10,
			with energy above 5 GeV		sci-req-11, sci-req-12,
					sci-req-13, sci-req-14

EC Engineering Requirements (example 1 of 97)

cms-docdb.cern.ch docid=13447

ID	Title	Туре	Requirement Text	Rationale/Notes	Parents
EC-engr-023	EC sensor time resolution	requirement	EC silicon cells shall have a time-of-arrival resolution of 50 ps or less throughout HL- LHC operation for each cell with collected charge > 10 fC	For pileup rejection, aid in particle flow reconstruction, and aid in identifying primary vertex and triggering interaction	EC-sci-engr-7, EC-sci-engr-9
D					

Project Scientist

Programmatic Requirements

- Not all engineering requirements flow from science goals, some are "programmatic"
- ES&H requirements are of this kind
 - These are contained in the same L2 spreadsheets as those that flow from science, but do not have parents.
 - Example excerpts from OT (<u>cms-docdb.cern.ch docid=13388</u>)below:

ID	Title	Туре	Requirement Text	Rationale/Notes	Parents
OT-engr-013	Outer Tracker System ES&H Personnel Injury and Equipment Damage	requirement	Component and tooling internal loads shall not exceed material allowables plus a factor of safety.	Factors of Safety may be facility dependent, early agreement must be made. Analyses and tests must be made to the worst case.	N/A, programmatic requirement
OT-engr-014	Outer Tracker System ES&H Electrical Hazards	requirement	All Project activities shall be shown to comply with international and US Electrical standards and regulations.	Following complete planning and engineering and PRIOR to commencing work on fabrication and/or test operation all systems components and the supporting documentation/data must be reviewed and compliance validated.	N/A, programmatic requirement
OT-engr-015	Outer Tracker System ES&H Mechanical Fluid Cooling Systems Hazards	requirement	All Project activities associated with mechanical fluid cooling systems shall be shown to comply with international and US ES&H standards and regulation.	Following complete planning and engineering and PRIOR to commencing work on fabrication and/or test operation all systems components and the supporting documentation/data must be reviewed and compliance validated.	N/A, programmatic requirement
OT-engr-016	Outer Tracker System Logistics - Transport	requirement	Component packaging shall be sufficient to prevent component damage during all forms of transport.	Verfication of this requirement need not exceed engineering judgment except in cases specifically identified by the Lead Systems Engineer.	N/A, programmatic requirement

Relevant iCMS Management

- CMS UC is ultimately responsible for scientific/technical requirements
 - In practice, delegated to subdetector PMs
- CMS TC is ultimately responsible for QA for technical & programmatic requirements
 - Delegated to subdetector PMs for implementation for non-safety reqs.
 - TC enforces through reviews
 - Formally delegated to LEXGLIMOS (CERN safety professional) for safety reqs.

UC = Upgrade Coordinator TC = Technical Coordinator

Chris Hill

Relationship with U.S. HL-LHC Project

- QA procedures for each CMS subdetector (e.g. L1 Trigger) established by relevant iCMS subdetector PM
- Corresponding U.S. CMS subproject L2 manager (e.g. 402.6) responsible for implementation, documentation, etc within U.S. project to satisfy **both** iCMS scrutiny **and** U.S. project/DOE requisites
- This is facilitated by the fact that in many cases one of the iCMS subdetector managers is a member of U.S. CMS
 - Sometimes, as in my example, this is the **same person** as the U.S. CMS L2

iCMS Approval Steps

- iCMS collaboration QA practices are embedded in the formal review and approval process described in the LHC Experiments Phase II Upgrades Approval Process [CERN LHCC-2015-007].
- The following steps are required for **each** CMS subdetector in the Upgrade:
- Step 1: Initial Design
 - review overall scope and cost for the entire upgrade program for each experiment, retaining the possibility for different options which may depend on technical issues and/or on funding availability. Approve readiness to proceed to Step 2. Step 1 is documented in the CMS Upgrade Technical Proposal [Ref-7] and Scope Documents [Ref-8].
- Step 2: Baseline Design
 - review and approve Technical Design Reports and QA plans for each subdetector. This documents the baseline scope, cost and schedule for the subsequent change control process.
- Step 3: Final Design / Start of Construction
 - review and approve the final design and the production of the major detector components, verifying that they meet the requirements and are compatible with the installation plan. Establish follow-up reviews/approvals for installation readiness.
- Step 4: Installation and Commissioning
 - review and approve the installation and commissioning of the major detector components. Evaluate the capability of the integrated detectors to provide the expected performance. Review and approve readiness for operations.
- Each of these steps includes review/approval at the CMS level, followed by review/approval by CERN LHCC/UCG and RB.

I showed you the approval of the TDRs on slide 6, so we are roughly here

- iCMS Science Goals, Science Requirements and Engineering requirements defined/refined by R&D over past year(s)
 - Documented in TPs + TDRs for each sub-system
 - Documents reviewed by LHCC/UCG and RB as part of step 2 (baseline design) of CERN's approval process
- U.S. CMS HL-LHC project documents this Science Flowdown in requirements spreadsheets in docDB
- QA procedures developed by iCMS subdetector managers, coordinated by iCMS TC, enforced by series of reviews
 - Part of step 3 (final design) of CERN's approval process
 - U.S. CMS HL-LHC L2s implement these QA procedures in their sub-project making sure also comply with U.S. project requisites (details subject of T.J. Sarlina's and C. Wilkinson's talks).

iCMS to U.S. CMS Connections

- Overall coordination of the upgrades for the U.S. is through the Project Manager
- Overall coordination of the upgrades for CMS is through the CMS Upgrade Coordinator
- Connection between U. S. CMS Subprojects and International subprojects is at the L2/L3 manager level
 - The U.S. CMS L2 managers are members of the subproject Upgrade Management Board

- The U.S. is embedded in all facets of leadership in international CMS
 - To name a few: Deputy Spokesperson, Physics Coordinator, Offline Coordinator, HL-LHC Upgrade Deputy Coordinator, Spokesperson Advisory Group, Collaboration Board Secretary, BRIL / HCAL / DAQ / MTD coordination
- Having this kind of leadership reflects our technical and managerial skills
 - It also means we share in all decision making, oversight, and technical interfaces
- Many of the scientists leading the U.S. CMS HL-LHC upgrades are also leaders in the international CMS organization
 - This ensures smooth communication between the U.S. project and the overall project