
Kubernetes
A brief(?!) introduction

 Kubernetes v1.12 11/2018
CC-BY 4.0

What is Kubernetes?
● Project that was spun out of Google as an open source

container orchestration platform.
● Built from the lessons learned in the experiences of

developing and running Google’s Borg and Omega.
● Designed from the ground-up as a loosely coupled

collection of components centered around deploying,
maintaining and scaling workloads.

What does Kubernetes do?
● Abstracts away the underlying hardware of nodes

and provides a uniform interface for workloads to be
both deployed and consume the shared pool of
resources.

● Works as an engine for resolving state by converging
actual and the desired state of the system.

What are its capabilities?

● Autoscale Workloads
● Persistent services, cron jobs, and (to some

extent) batch workloads
● Manage Stateless and Stateful Applications
● Provide native methods of service discovery
● Self healing

Architecture
Overview

The Control Plane

● The Kubernetes "master"
● Manages the cluster configuration & state

via distributed datastore
● Responds to state changes, provides API

(CLI + RESTful interfaces), scheduling, etc

Nodes

● Pods
○ One or more containers in a single

namespace
● kubelet

○ Manages Pods
● kube-proxy

○ Manages Pod networking
● Container Runtime Engine

○ Manages Containers

Pods

● The smallest deployable object
in Kubernetes

● Pods are not restarted when
they die.

● Higher level objects manage
replicas, fault tolerance, etc

● State must be stored externally!

kubelet
● Daemon on every node that manages pod lifecycle
● Communicates with the Container Runtime Interface

(CRI) to deploy containers
○ Typically Docker

● Listens over HTTP(S) for Pod specification files
○ Typically from API Server

Concepts
and

Resources

Concepts and Resources

The API
and

Object Model

API Overview

● Kubernetes provides a RESTful API for
all interactions with a cluster

● The kubectl client wraps around this
API

● Everything within Kubernetes is an API
Object.

API Groups
● An API Group is a REST

compatible path that
acts as the type
descriptor for a
Kubernetes object.

● Referenced within an
object as the
apiVersion and kind.

Format:
/apis/<group>/<version>/<resource>

Examples:
/apis/apps/v1/deployments
/apis/batch/v1beta1/cronjobs

Object Model
● Objects are a “record of intent” or a persistent entity that

represent the desired state of the object within the
cluster.

● All objects MUST have apiVersion, kind, and
poses the nested fields metadata.name,
metadata.namespace, and metadata.uid.

Object Model Requirements
● apiVersion: Kubernetes API version of the Object
● kind: Type of Kubernetes Object
● metadata.name: Unique name of the Object
● metadata.namespace: Scoped environment name that the object

belongs to (will default to current).
● metadata.uid: The (generated) uid for an object.

apiVersion: v1
kind: Pod
metadata:
 name: pod-example
 namespace: default
 uid: f8798d82-1185-11e8-94ce-080027b3c7a6

Object Model - Workloads

● Workload related objects within Kubernetes
have an additional two nested fields spec
and status.
○ spec - Describes the desired state or

configuration of the object to be created.
○ status - Is managed by Kubernetes and describes

the actual state of the object and its history.

Workload Object Example
Example Object

apiVersion: v1
kind: Pod
metadata:
 name: pod-example
spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine
 ports:
 - containerPort: 80

Example Status Snippet
status:

 conditions:

 - lastProbeTime: null

 lastTransitionTime: 2018-02-14T14:15:52Z

 status: "True"

 type: Ready

 - lastProbeTime: null

 lastTransitionTime: 2018-02-14T14:15:49Z

 status: "True"

 type: Initialized

 - lastProbeTime: null

 lastTransitionTime: 2018-02-14T14:15:49Z

 status: "True"

 type: PodScheduled

Concepts and Resources

Core
Objects

● Namespaces
● Pods
● Labels
● Selectors
● Services

Core Objects

Kubernetes has several core building blocks
that make up the foundation of their higher
level components.

Namespaces
Pods

Selectors
Services

Labels

Namespace
Namespaces are a logical cluster or environment, and are
the primary method of partitioning a cluster or scoping
access.

apiVersion: v1
kind: Namespace
metadata:
 name: prod
 labels:
 app: MyBigWebApp

$ kubectl get ns --show-labels
NAME STATUS AGE LABELS
default Active 11h <none>
kube-public Active 11h <none>
kube-system Active 11h <none>
prod Active 6s app=MyBigWebApp

Pod
● Foundational building block

of Kubernetes Workloads.
● Pods are one or more

containers that share
volumes and a network
namespace

Pod Examples
apiVersion: v1
kind: Pod
metadata:
 name: multi-container-example
spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine
 ports:
 - containerPort: 80
 volumeMounts:
 - name: html
 mountPath: /usr/share/nginx/html
 - name: content
 image: alpine:latest
 command: ["/bin/sh", "-c"]
 args:
 - while true; do
 date >> /html/index.html;
 sleep 5;
 done
 volumeMounts:
 - name: html
 mountPath: /html
 volumes:
 - name: html
 emptyDir: {}

apiVersion: v1
kind: Pod
metadata:
 name: pod-example
spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine
 ports:
 - containerPort: 80

Key Pod Container Attributes
● name - The name of the container

● image - The container image

● ports - array of ports to expose.
Can be granted a friendly name and
protocol may be specified

● env - array of environment variables

● command - Entrypoint array (equiv
to Docker ENTRYPOINT)

● args - Arguments to pass to the
command (equiv to Docker CMD)

Container

name: nginx
image: nginx:stable-alpine
ports:
 - containerPort: 80
 name: http
 protocol: TCP
env:
 - name: MYVAR
 value: isAwesome
command: [“/bin/sh”, “-c”]
args: [“echo ${MYVAR}”]

Labels

● key-value pairs that are
used to identify, describe
and group together related
sets of objects or
resources.

● Can be applied to nodes,
pods, services, etc etc.

Label Example
apiVersion: v1
kind: Pod
metadata:
 name: pod-label-example
 labels:
 app: nginx
 env: prod
spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine
 ports:
 - containerPort: 80

Selectors
● Use labels to filter or

select objects, and are
used throughout
Kubernetes.

● Supports equality-based
selection and "set-based"
selection
○ item != foo
○ item in (bar,baz)

apiVersion: v1
kind: Pod
metadata:
 name: pod-label-example
 labels:
 app: nginx
 env: prod
spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine
 ports:
 - containerPort: 80
 nodeSelector:
 gpu: nvidia

apiVersion: v1
kind: Pod
metadata:
 name: pod-label-example
 labels:
 app: nginx
 env: prod
spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine
 ports:
 - containerPort: 80
 nodeSelector:
 gpu: nvidia

Selector Example

Services
● An abstraction to expose Pods to the network
● Attached to pods via Selectors
● Defines a network policy by which to access the Pods

attached
● Durable resource (unlike Pods)

○ static cluster-unique IP
○ static namespaced DNS name
<service name>.<namespace>.svc.cluster.local

Service Types
There are 4 major service types:
● ClusterIP (default)

○ Internal cluster-only networking
● NodePort

○ Maps to a port on the "external" network of the host
● LoadBalancer

○ Uses an external system to map an IP to the service
● ExternalName

○ Maps the service IP to the value of a DNS lookup

ClusterIP Service

ClusterIP services exposes a
service on a strictly cluster
internal virtual IP.

apiVersion: v1
kind: Service
metadata:
 name: example-prod
spec:
 selector:
 app: nginx
 env: prod
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80

Cluster IP Service

Name: example-prod
Selector: app=nginx,env=prod
Type: ClusterIP
IP: 10.96.28.176
Port: <unset> 80/TCP
TargetPort: 80/TCP
Endpoints: 10.255.16.3:80,
 10.255.16.4:80

/ # nslookup example-prod.default.svc.cluster.local

Name: example-prod.default.svc.cluster.local
Address 1: 10.96.28.176 example-prod.default.svc.cluster.local

NodePort Service

● NodePort services extend the
ClusterIP service.

● Exposes a port on every
node’s IP.

● Port can either be statically
defined, or dynamically taken
from a range between
30000-32767.

apiVersion: v1
kind: Service
metadata:
 name: example-prod
spec:
 type: NodePort
 selector:
 app: nginx
 env: prod
 ports:
 - nodePort: 32410
 protocol: TCP
 port: 80
 targetPort: 80

NodePort Service

Name: example-prod
Selector: app=nginx,env=prod
Type: NodePort
IP: 10.96.28.176
Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 32410/TCP
Endpoints: 10.255.16.3:80,
 10.255.16.4:80

LoadBalancer Service
apiVersion: v1
kind: Service
metadata:
 name: example-prod
spec:
 type: LoadBalancer
 selector:
 app: nginx
 env: prod
 ports:
 protocol: TCP
 port: 80
 targetPort: 80

● LoadBalancer services
extend NodePort.

● Works in conjunction with an
external system to map a
cluster external IP to the
exposed service.

LoadBalancer Service

Name: example-prod
Selector: app=nginx,env=prod
Type: LoadBalancer
IP: 10.96.28.176
LoadBalancer
Ingress: 172.17.18.43
Port: <unset> 80/TCP
TargetPort: 80/TCP
NodePort: <unset> 32410/TCP
Endpoints: 10.255.16.3:80,
 10.255.16.4:80

Break time!

Concepts and Resources

Workloads

● ReplicaSet
● Deployment
● DaemonSet
● StatefulSet
● Job
● CronJob

Pod Template
● Workload Controllers manage instances of Pods based

off a provided template.
● Pod Templates are Pod specs with limited metadata.
● Controllers use

Pod Templates to
make actual pods.

apiVersion: v1
kind: Pod
metadata:
 name: pod-example
 labels:
 app: nginx
spec:
 containers:
 - name: nginx
 image: nginx

template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx

ReplicaSet
● Primary method of managing pod replicas and their

lifecycle.
● Includes their scheduling, scaling, and deletion.
● Their job is simple: Always ensure the desired

number of pods are running.

ReplicaSet
● replicas: The desired

number of instances of the Pod.
● selector:The label selector

for the ReplicaSet will manage
ALL Pod instances that it
targets; whether it’s desired or
not.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: rs-example
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 env: prod
 template:
 <pod template>

ReplicaSet

$ kubectl describe rs rs-example
Name: rs-example
Namespace: default
Selector: app=nginx,env=prod
Labels: app=nginx
 env=prod
Annotations: <none>
Replicas: 3 current / 3 desired
Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=nginx
 env=prod
 Containers:
 nginx:
 Image: nginx:stable-alpine
 Port: 80/TCP
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 16s replicaset-controller Created pod: rs-example-mkll2
 Normal SuccessfulCreate 16s replicaset-controller Created pod: rs-example-b7bcg
 Normal SuccessfulCreate 16s replicaset-controller Created pod: rs-example-9l4dt

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: rs-example
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 env: prod
 template:
 metadata:
 labels:
 app: nginx
 env: prod
 spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine
 ports:
 - containerPort: 80

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
rs-example-9l4dt 1/1 Running 0 1h
rs-example-b7bcg 1/1 Running 0 1h
rs-example-mkll2 1/1 Running 0 1h

Deployment
● Declarative method of managing Pods via ReplicaSets.
● Provide rollback functionality and update control.
● Updates are managed through the pod-template-hash

label.
● Each iteration creates a unique label that is assigned to

both the ReplicaSet and subsequent Pods.

Deployment
● revisionHistoryLimit: The number of

previous iterations of the Deployment to retain.

● strategy: Describes the method of updating
the Pods based on the type. Valid options are
Recreate or RollingUpdate.

○ Recreate: All existing Pods are killed
before the new ones are created.

○ RollingUpdate: Cycles through
updating the Pods according to the
parameters: maxSurge and
maxUnavailable.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: deploy-example
spec:
 replicas: 3
 revisionHistoryLimit: 3
 selector:
 matchLabels:
 app: nginx
 env: prod
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0
 template:
 <pod template>

RollingUpdate Deployment

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mydep-6766777fff-9r2zn 1/1 Running 0 5h
mydep-6766777fff-hsfz9 1/1 Running 0 5h
mydep-6766777fff-sjxhf 1/1 Running 0 5h

$ kubectl get replicaset
NAME DESIRED CURRENT READY AGE
mydep-6766777fff 3 3 3 5h

Updating pod template generates a
new ReplicaSet revision.

R1 pod-template-hash:
676677fff
R2 pod-template-hash:
54f7ff7d6d

RollingUpdate Deployment

$ kubectl get replicaset
NAME DESIRED CURRENT READY AGE
mydep-54f7ff7d6d 1 1 1 5s
mydep-6766777fff 2 3 3 5h

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mydep-54f7ff7d6d-9gvll 1/1 Running 0 2s
mydep-6766777fff-9r2zn 1/1 Running 0 5h
mydep-6766777fff-hsfz9 1/1 Running 0 5h
mydep-6766777fff-sjxhf 1/1 Running 0 5h

New ReplicaSet is initially scaled up
based on maxSurge.

R1 pod-template-hash:
676677fff
R2 pod-template-hash:
54f7ff7d6d

RollingUpdate Deployment

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mydep-54f7ff7d6d-9gvll 1/1 Running 0 5s
mydep-54f7ff7d6d-cqvlq 1/1 Running 0 2s
mydep-6766777fff-9r2zn 1/1 Running 0 5h
mydep-6766777fff-hsfz9 1/1 Running 0 5h

$ kubectl get replicaset
NAME DESIRED CURRENT READY AGE
mydep-54f7ff7d6d 2 2 2 8s
mydep-6766777fff 2 2 2 5h

Phase out of old Pods managed by
maxSurge and maxUnavailable.

R1 pod-template-hash:
676677fff
R2 pod-template-hash:
54f7ff7d6d

RollingUpdate Deployment

$ kubectl get replicaset
NAME DESIRED CURRENT READY AGE
mydep-54f7ff7d6d 3 3 3 10s
mydep-6766777fff 0 1 1 5h

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mydep-54f7ff7d6d-9gvll 1/1 Running 0 7s
mydep-54f7ff7d6d-cqvlq 1/1 Running 0 5s
mydep-54f7ff7d6d-gccr6 1/1 Running 0 2s
mydep-6766777fff-9r2zn 1/1 Running 0 5h

Phase out of old Pods managed by
maxSurge and maxUnavailable.

R1 pod-template-hash:
676677fff
R2 pod-template-hash:
54f7ff7d6d

RollingUpdate Deployment

$ kubectl get replicaset
NAME DESIRED CURRENT READY AGE
mydep-54f7ff7d6d 3 3 3 13s
mydep-6766777fff 0 0 0 5h

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mydep-54f7ff7d6d-9gvll 1/1 Running 0 10s
mydep-54f7ff7d6d-cqvlq 1/1 Running 0 8s
mydep-54f7ff7d6d-gccr6 1/1 Running 0 5s

Phase out of old Pods managed by
maxSurge and maxUnavailable.

R1 pod-template-hash:
676677fff
R2 pod-template-hash:
54f7ff7d6d

RollingUpdate Deployment

$ kubectl get replicaset
NAME DESIRED CURRENT READY AGE
mydep-54f7ff7d6d 3 3 3 15s
mydep-6766777fff 0 0 0 5h

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mydep-54f7ff7d6d-9gvll 1/1 Running 0 12s
mydep-54f7ff7d6d-cqvlq 1/1 Running 0 10s
mydep-54f7ff7d6d-gccr6 1/1 Running 0 7s

Updated to new deployment revision
completed.

R1 pod-template-hash:
676677fff
R2 pod-template-hash:
54f7ff7d6d

DaemonSet
● Ensure that all nodes matching certain criteria will run

an instance of the supplied Pod.
● They bypass default scheduling mechanisms.
● Are ideal for cluster wide services such as log

forwarding, or health monitoring.

DaemonSet
● revisionHistoryLimit: The number of

previous iterations of the DaemonSet to retain.

● updateStrategy: Describes the method of
updating the Pods based on the type. Valid
options are RollingUpdate or OnDelete.

○ RollingUpdate: Cycles through
updating the Pods according to the value
of maxUnavailable.

○ OnDelete: The new instance of the Pod
is deployed ONLY after the current
instance is deleted.

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: ds-example
spec:
 revisionHistoryLimit: 3
 selector:
 matchLabels:
 app: nginx
 updateStrategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 1
 template:
 spec:
 nodeSelector:
 nodeType: edge
 <pod template>

StatefulSet
● Tailored to managing Pods that must persist or maintain

state.
● Pod identity including hostname, network, and

storage WILL be persisted.

Job
● Job controller ensures one or more pods are executed

and successfully terminate.
● Will continue to try and execute the job until it satisfies

the completion and/or parallelism condition.
● Pods are NOT cleaned up until the job itself is deleted.*

Job
● backoffLimit: The number of failures

before the job itself is considered failed.

● completions: The total number of
successful completions desired.

● parallelism: How many instances of the
pod can be run concurrently.

● spec.template.spec.restartPolicy:
Jobs only support a restartPolicy of
type Never or OnFailure.

apiVersion: batch/v1
kind: Job
metadata:
 name: job-example
spec:
 backoffLimit: 4
 completions: 4
 parallelism: 2
 template:
 spec:
 restartPolicy: Never
 <pod-template>

CronJob
An extension of the Job Controller, it provides a method of
executing jobs on a cron-like schedule.

CronJobs within Kubernetes
 use UTC ONLY.

CronJob
● schedule: The cron schedule for

the job.

● successfulJobHistoryLimit:
The number of successful jobs to
retain.

● failedJobHistoryLimit: The
number of failed jobs to retain.

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: cronjob-example
spec:
 schedule: "*/1 * * * *"
 successfulJobsHistoryLimit: 3
 failedJobsHistoryLimit: 1
 jobTemplate:
 spec:
 completions: 4
 parallelism: 2
 template:
 <pod template>

Concepts and Resources

Storage

● Volumes
● Persistent

Volumes
● Persistent

Volume Claims
● StorageClass

Storage
Pods by themselves are useful, but many workloads
require exchanging data between containers, or persisting
some form of data.

For this we have Volumes, PersistentVolumes,
PersistentVolumeClaims, and StorageClasses.

Volumes
● Storage that is tied to the Pod’s Lifecycle.
● A pod can have one or more types of volumes attached

to it.
● Can be consumed by any of the containers within the

pod.
● Survive Pod restarts; however their durability beyond

that is dependent on the Volume Type.

Volume Types

● awsElasticBlockStore
● azureDisk
● azureFile
● cephfs
● configMap
● csi
● downwardAPI
● emptyDir
● fc (fibre channel)

● flocker
● gcePersistentDisk
● gitRepo
● glusterfs
● hostPath
● iscsi
● local
● nfs
● persistentVolume

Claim

● projected
● portworxVolume
● quobyte
● rbd
● scaleIO
● secret
● storageos
● vsphereVolume

Persistent Volume Supported

Volumes
● volumes: A list of volume objects to

be attached to the Pod. Every object
within the list must have it’s own
unique name.

● volumeMounts: A container specific
list referencing the Pod volumes by
name, along with their desired
mountPath.

apiVersion: v1
kind: Pod
metadata:
 name: volume-example
spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine
 volumeMounts:
 - name: html
 mountPath: /usr/share/nginx/html
 ReadOnly: true
 - name: content
 image: alpine:latest
 command: ["/bin/sh", "-c"]
 args:
 - while true; do
 date >> /html/index.html;
 sleep 5;
 done
 volumeMounts:
 - name: html
 mountPath: /html
 volumes:
 - name: html
 emptyDir: {}

Volumes
● volumes: A list of volume objects to

be attached to the Pod. Every object
within the list must have it’s own
unique name.

● volumeMounts: A container specific
list referencing the Pod volumes by
name, along with their desired
mountPath.

apiVersion: v1
kind: Pod
metadata:
 name: volume-example
spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine
 volumeMounts:
 - name: html
 mountPath: /usr/share/nginx/html
 ReadOnly: true
 - name: content
 image: alpine:latest
 command: ["/bin/sh", "-c"]
 args:
 - while true; do
 date >> /html/index.html;
 sleep 5;
 done
 volumeMounts:
 - name: html
 mountPath: /html
 volumes:
 - name: html
 emptyDir: {}

Volumes
● volumes: A list of volume objects to

be attached to the Pod. Every object
within the list must have it’s own
unique name.

● volumeMounts: A container specific
list referencing the Pod volumes by
name, along with their desired
mountPath.

apiVersion: v1
kind: Pod
metadata:
 name: volume-example
spec:
 containers:
 - name: nginx
 image: nginx:stable-alpine
 volumeMounts:
 - name: html
 mountPath: /usr/share/nginx/html
 ReadOnly: true
 - name: content
 image: alpine:latest
 command: ["/bin/sh", "-c"]
 args:
 - while true; do
 date >> /html/index.html;
 sleep 5;
 done
 volumeMounts:
 - name: html
 mountPath: /html
 volumes:
 - name: html
 emptyDir: {}

Persistent Volumes
● A PersistentVolume (PV) represents a storage

resource.
● PVs are a cluster wide resource linked to a backing

storage provider: NFS, GCEPersistentDisk, RBD etc.
● Generally provisioned by an administrator.
● Their lifecycle is handled independently from a pod
● CANNOT be attached to a Pod directly. Relies on a

PersistentVolumeClaim

PersistentVolumeClaims
● A PersistentVolumeClaim (PVC) is a namespaced

request for storage.
● Satisfies a set of requirements instead of mapping to a

storage resource directly.
● Ensures that an application’s ‘claim’ for storage is

portable across numerous backends or providers.

Persistent Volumes and Claims

Cluster
Users

Cluster
Admins

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfsserver
spec:
 capacity:
 storage: 50Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Delete
 storageClassName: slow
 mountOptions:
 - hard
 - nfsvers=4.1
 nfs:
 path: /exports
 server: 172.22.0.42

PersistentVolume
● capacity.storage: The total

amount of available storage.

● volumeMode: The type of volume,
this can be either Filesystem or
Block.

● accessModes: A list of the supported
methods of accessing the volume.
Options include:

○ ReadWriteOnce
○ ReadOnlyMany
○ ReadWriteMany

PersistentVolume
● persistentVolumeReclaimPolicy:

The behaviour for PVC’s that have been
deleted. Options include:

○ Retain - manual clean-up
○ Delete - storage asset deleted by

provider.

● storageClassName: Optional name
of the storage class that PVC’s can
reference. If provided, ONLY PVC’s
referencing the name consume use it.

● mountOptions: Optional mount
options for the PV.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfsserver
spec:
 capacity:
 storage: 50Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Delete
 storageClassName: slow
 mountOptions:
 - hard
 - nfsvers=4.1
 nfs:
 path: /exports
 server: 172.22.0.42

PersistentVolumeClaim
● accessModes: The selected method of

accessing the storage. This MUST be a
subset of what is defined on the target PV
or Storage Class.

○ ReadWriteOnce
○ ReadOnlyMany
○ ReadWriteMany

● resources.requests.storage: The
desired amount of storage for the claim

● storageClassName: The name of the
desired Storage Class

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pvc-sc-example
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: slow

PVs and PVCs with Selectors
kind: PersistentVolume
apiVersion: v1
metadata:
 name: pv-selector-example
 labels:
 type: hostpath
spec:
 capacity:
 storage: 2Gi
 accessModes:
 - ReadWriteMany
 hostPath:
 path: "/mnt/data"

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pvc-selector-example
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 selector:
 matchLabels:
 type: hostpath

PVs and PVCs with Selectors
kind: PersistentVolume
apiVersion: v1
metadata:
 name: pv-selector-example
 labels:
 type: hostpath
spec:
 capacity:
 storage: 2Gi
 accessModes:
 - ReadWriteMany
 hostPath:
 path: "/mnt/data"

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pvc-selector-example
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 selector:
 matchLabels:
 type: hostpath

PV Phases

Available

PV is ready
and available

to be
consumed.

Bound

The PV has
been bound to

a claim.

Released

The binding
PVC has been
deleted, and

the PV is
pending

reclamation.

Failed

An error has
been

encountered
attempting to
reclaim the

PV.

StorageClass
● Storage classes are an abstraction on top of an external

storage resource (PV)
● Work hand-in-hand with the external storage system to

enable dynamic provisioning of storage
● Eliminates the need for the cluster admin to

pre-provision a PV

StorageClass

pv: pvc-9df65c6e-1a69-11e8-ae10-080027a3682b

uid: 9df65c6e-1a69-11e8-ae10-080027a3682b

1. PVC makes a request of
the StorageClass.

2. StorageClass provisions
request through API with
external storage system.

3. External storage system
creates a PV strictly satisfying
the PVC request.

4. provisioned PV is bound
to requesting PVC.

StorageClass
● provisioner: Defines the ‘driver’ to

be used for provisioning of the external
storage.

● parameters: A hash of the various
configuration parameters for the
provisioner.

● reclaimPolicy: The behaviour for
the backing storage when the PVC is
deleted.
○ Retain - manual clean-up
○ Delete - storage asset deleted by

provider

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: standard
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard
 zones: us-central1-a, us-central1-b
reclaimPolicy: Delete

Available StorageClasses

● AWSElasticBlockStore
● AzureFile
● AzureDisk
● CephFS
● Cinder
● FC
● Flocker
● GCEPersistentDisk
● Glusterfs

● iSCSI
● Quobyte
● NFS
● RBD
● VsphereVolume
● PortworxVolume
● ScaleIO
● StorageOS
● Local

Internal Provisioner

Lab - github.com/mrbobbytables/k8s-intro-tutorials/blob/master/storage

Working with
Volumes

Concepts and Resources

Configuration ● ConfigMap
● Secret

Configuration

Kubernetes has an integrated pattern for
decoupling configuration from application or
container.

This pattern makes use of two Kubernetes
components: ConfigMaps and Secrets.

ConfigMap
● Externalized data stored within kubernetes.
● Can be referenced through several different means:

○ environment variable
○ a command line argument (via env var)
○ injected as a file into a volume mount

● Can be created from a manifest, literals, directories, or
files directly.

ConfigMap
data: Contains key-value pairs of
ConfigMap contents.

apiVersion: v1
kind: ConfigMap
metadata:
 name: manifest-example
data:
 state: Michigan
 city: Ann Arbor
 content: |
 Look at this,
 its multiline!

Secret
● Functionally identical to a ConfigMap.
● Stored as base64 encoded content.
● Encrypted at rest within etcd (if configured!).
● Ideal for username/passwords, certificates or other

sensitive information that should not be stored in a
container.

● Can be created from a manifest, literals, directories, or
from files directly.

Secret
● type: There are three different types of

secrets within Kubernetes:

○ docker-registry - credentials
used to authenticate to a container
registry

○ generic/Opaque - literal values
from different sources

○ tls - a certificate based secret

● data: Contains key-value pairs of
base64 encoded content.

apiVersion: v1
kind: Secret
metadata:
 name: manifest-secret
type: Opaque
data:
 username: ZXhhbXBsZQ==
 password: bXlwYXNzd29yZA==

Injecting as Environment Variable
apiVersion: batch/v1
kind: Job
metadata:
 name: cm-env-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“printenv CITY”]
 env:
 - name: CITY
 valueFrom:
 configMapKeyRef:
 name: manifest-example
 key: city
 restartPolicy: Never

apiVersion: batch/v1
kind: Job
metadata:
 name: secret-env-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“printenv USERNAME”]
 env:
 - name: USERNAME
 valueFrom:
 secretKeyRef:
 name: manifest-example
 key: username
 restartPolicy: Never

Injecting as Environment Variable
apiVersion: batch/v1
kind: Job
metadata:
 name: cm-env-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“printenv CITY”]
 env:
 - name: CITY
 valueFrom:
 configMapKeyRef:
 name: manifest-example
 key: city
 restartPolicy: Never

apiVersion: batch/v1
kind: Job
metadata:
 name: secret-env-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“printenv USERNAME”]
 env:
 - name: USERNAME
 valueFrom:
 secretKeyRef:
 name: manifest-example
 key: username
 restartPolicy: Never

Injecting in a Command
apiVersion: batch/v1
kind: Job
metadata:
 name: cm-cmd-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“echo Hello ${CITY}!”]
 env:
 - name: CITY
 valueFrom:
 configMapKeyRef:
 name: manifest-example
 key: city
 restartPolicy: Never

apiVersion: batch/v1
kind: Job
metadata:
 name: secret-cmd-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“echo Hello ${USERNAME}!”]
 env:
 - name: USERNAME
 valueFrom:
 secretKeyRef:
 name: manifest-example
 key: username
 restartPolicy: Never

Injecting in a Command
apiVersion: batch/v1
kind: Job
metadata:
 name: cm-cmd-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“echo Hello ${CITY}!”]
 env:
 - name: CITY
 valueFrom:
 configMapKeyRef:
 name: manifest-example
 key: city
 restartPolicy: Never

apiVersion: batch/v1
kind: Job
metadata:
 name: secret-cmd-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“echo Hello ${USERNAME}!”]
 env:
 - name: USERNAME
 valueFrom:
 secretKeyRef:
 name: manifest-example
 key: username
 restartPolicy: Never

Injecting as a Volume
apiVersion: batch/v1
kind: Job
metadata:
 name: cm-vol-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“cat /myconfig/city”]
 volumeMounts:
 - name: config-volume
 mountPath: /myconfig
 restartPolicy: Never
 volumes:
 - name: config-volume
 configMap:
 name: manifest-example

apiVersion: batch/v1
kind: Job
metadata:
 name: secret-vol-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“cat /mysecret/username”]
 volumeMounts:
 - name: secret-volume
 mountPath: /mysecret
 restartPolicy: Never
 volumes:
 - name: secret-volume
 secret:
 secretName: manifest-example

Injecting as a Volume
apiVersion: batch/v1
kind: Job
metadata:
 name: cm-vol-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“cat /myconfig/city”]
 volumeMounts:
 - name: config-volume
 mountPath: /myconfig
 restartPolicy: Never
 volumes:
 - name: config-volume
 configMap:
 name: manifest-example

apiVersion: batch/v1
kind: Job
metadata:
 name: secret-vol-example
spec:
 template:
 spec:
 containers:
 - name: mypod
 image: alpine:latest
 command: [“/bin/sh”, “-c”]
 args: [“cat /mysecret/username”]
 volumeMounts:
 - name: secret-volume
 mountPath: /mysecret
 restartPolicy: Never
 volumes:
 - name: secret-volume
 secret:
 secretName: manifest-example

Questions?

Architecture Overview

Control Plane
Components

Control Plane Components

● kube-apiserver
● etcd
● kube-controller-manager
● kube-scheduler

kube-apiserver
● Provides a forward facing REST interface into the

kubernetes control plane and datastore.
● All clients and other applications interact with

kubernetes strictly through the API Server.
● Acts as the gatekeeper to the cluster by handling

authentication and authorization, request validation,
mutation, and admission control in addition to being the
front-end to the backing datastore.

etcd
● etcd acts as the cluster datastore.
● Purpose in relation to Kubernetes is to provide a strong,

consistent and highly available key-value store for
persisting cluster state.

● Stores objects and config information.

kube-controller-manager

● Serves as the primary daemon that
manages all core component control loops.

● Monitors the cluster state via the apiserver
and steers the cluster towards the
desired state.

List of core controllers:
https://github.com/kubernetes/kubernetes/blob/master/cmd/kube-controller-manager/app/controllermanager.go#L344

https://github.com/kubernetes/kubernetes/blob/master/cmd/kube-controller-manager/app/controllermanager.go#L344

kube-scheduler
● Verbose policy-rich engine that evaluates workload

requirements and attempts to place it on a matching
resource.

● Default scheduler uses bin packing.
● Workload Requirements can include: general hardware

requirements, affinity/anti-affinity, labels, and other
various custom resource requirements.

Services
● Unified method of accessing

the exposed workloads of Pods.
● Durable resource

○ static cluster IP
○ static namespaced

DNS name

Services
● Unified method of accessing

the exposed workloads of Pods.
● Durable resource

○ static cluster IP
○ static namespaced

DNS name

NOT Ephemeral!

Architecture Overview

Networking

Kubernetes Networking

● Pod Network
○ Cluster-wide network used for pod-to-pod

communication managed by a CNI (Container
Network Interface) plugin.

● Service Network
○ Cluster-wide range of Virtual IPs managed by

kube-proxy for service discovery.

Container Network Interface (CNI)

● Pod networking within Kubernetes is
plumbed via the Container Network
Interface (CNI).

● Functions as an interface between
the container runtime and a network
implementation plugin.

CNI Overview

CNI Overview

Fundamental Networking Rules
● All containers within a pod can communicate with each

other unimpeded.
● All Pods can communicate with all other Pods without

NAT.
● All nodes can communicate with all Pods (and

vice-versa) without NAT.
● The IP that a Pod sees itself as is the same IP that

others see it as.

Fundamentals Applied

● Container-to-Container
○ Containers within a pod exist within the same

network namespace and share an IP.
○ Enables intrapod communication over localhost.

● Pod-to-Pod
○ Allocated cluster unique IP for the duration of its life

cycle.
○ Pods themselves are fundamentally ephemeral.

Fundamentals Applied

● Pod-to-Service
○ managed by kube-proxy and given a persistent

cluster unique IP
○ exists beyond a Pod’s lifecycle.

● External-to-Service
○ Handled by kube-proxy.
○ Works in cooperation with a cloud provider or other

external entity (load balancer).

API Versioning
● Three tiers of API maturity

levels.
● Also referenced within the

object apiVersion.

● Alpha: Possibly buggy, And may change. Disabled by default.

● Beta: Tested and considered stable. However API Schema may
change. Enabled by default.

● Stable: Released, stable and API schema will not change.
Enabled by default.

Format:
/apis/<group>/<version>/<resource>

Examples:
/apis/apps/v1/deployments
/apis/batch/v1beta1/cronjobs

Equality based selectors allow for
simple filtering (=,==, or !=).

Selector Types
Set-based selectors are supported
on a limited subset of objects.
However, they provide a method of
filtering on a set of values, and
supports multiple operators including:
in, notin, and exist.

selector:
 matchExpressions:
 - key: gpu
 operator: in
 values: [“nvidia”]

selector:
 matchLabels:
 gpu: nvidia

